9 research outputs found
Human Papillomaviruses and genital co-infections in gynaecological outpatients
<p>Abstract</p> <p>Background</p> <p>High grade HPV infections and persistence are the strongest risk factors for cervical cancer. Nevertheless other genital microorganisms may be involved in the progression of HPV associated lesions.</p> <p>Methods</p> <p>Cervical samples were collected to search for human Papillomavirus (HPV), bacteria and yeast infections in gynaecologic outpatients. HPV typing was carried out by PCR and sequencing on cervical brush specimens. <it>Chlamydia trachomatis </it>was identified by strand displacement amplification (SDA) and the other microorganisms were detected by conventional methods.</p> <p>Results</p> <p>In this cross-sectional study on 857 enrolled outpatients, statistical analyses revealed a significant association of HPV with <it>C. trachomatis </it>and <it>Ureaplasma urealyticum (</it>at high density) detection, whereas no correlation was found between HPV infection and bacterial vaginosis, <it>Streptococcus agalactiae</it>, yeasts, <it>Trichomonas vaginalis </it>and <it>U. urealyticum</it>. <it>Mycoplasma hominis </it>was isolated only in a few cases both in HPV positive and negative women and no patient was infected with <it>Neisseria gonorrhoeae</it>.</p> <p>Conclusion</p> <p>Although bacterial vaginosis was not significantly associated with HPV, it was more common among the HPV positive women. A significant association between HPV and <it>C. trachomatis </it>was found and interestingly also with <it>U. urealyticum </it>but only at a high colonization rate. These data suggest that it may be important to screen for the simultaneous presence of different microorganisms which may have synergistic pathological effects.</p
Prevalence of HPV high and low risk types in cervical samples from the Italian general population: a population based study
<p>Abstract</p> <p>Background</p> <p>This multicenter study describes the type-specific prevalence of HPV infection in the general population from central and southern Italy, comparing the data with previously published Italian studies.</p> <p>Methods</p> <p>Women aged from 25 to 65 who attended cervical cancer screening in five different Italian regions were tested for HPV infection with Hybrid Capture II (HCII) low and high risk probes. Women repeating Pap-test upon unsatisfactory or positive results, or as a post-treatment and post-colposcopy follow-up analysis, were excluded from our study. High risk (HR) HPV positive samples were typed using GP5+/GP6+ primed PCR, followed by Reverse Line Blot for 18 high/intermediate risk HPV types, while low risk (LR) HPV positive samples were tested with type specific primers for HPV6 and HPV11.</p> <p>Results</p> <p>3817 women had a valid HCII test: 350 of them (9.2%) were positive for HR probes, 160 (4.2%) for LR probes, while 57 women were positive for both. Multiple infections were detected in 97 HR HPV positive women. The most common types were HPV 16 (3%), 31 (1.2%), 51 (1%). HPV6 ranked fifth (0.6%), HPV18 ranked tenth (0.5%) and HPV11 sixteenth (0.3%).</p> <p>In Sardinia the prevalence of high-risk infection was 13%, significantly higher than the mean value (p < 0.00005).</p> <p>The distribution of the most frequent types did not significantly differ by centre (p = 0.187) and age (p = 0.085).</p> <p>Conclusions</p> <p>Because cervical cancer incidence and Pap test coverage is lower in southern than in northern Italy, a lower prevalence of high-risk infections in the general population was expected in the south. However, prevalence detected in this study for the south of the country is slightly but significantly higher than the rest of Italy. The consequence may be an epidemic of cervical cancer in the next decades if adequate screening programs are not implemented there.</p
Collagen Damage Location in Articular Cartilage Differs if Damage is Caused by Excessive Loading Magnitude or Rate
Collagen damage in articular cartilage is considered nearly irreversible and may be an early indication of cartilage degeneration. Surface fibrillation and internal collagen damage may both develop after overloading. This study hypothesizes that damage develops at these different locations, because the distribution of excessive strains varies with loading rate as a consequence of time-dependent cartilage properties. The objective is to explore whether collagen damage could preferentially occur superficially or internally, depending on the magnitude and rate of overloading. Bovine osteochondral plugs were compressed with a 2 mm diameter indenter to 15, 25, 35 and 45 N, and at 5, 60 and 120 mm/min. Surface fibrillation and internal collagen damage were graded by four observers, based on histology and staining of collagen damage. Results show that loading magnitude affects the degree of collagen damage, while loading rate dominates the location of network damage: low rates predominantly damage superficial collagen, while at high rates, internal collagen damage occurs. The proposed explanation for the rate-dependent location is that internal fluid flows govern the time-dependent internal tissue deformation and therewith the location of overstained and damaged areas. This supports the hypothesis that collagen damage development is influenced by the time-dependent material behaviour of cartilage
Management of pregnancy in autoimmune rheumatic diseases: maternal disease course, gestational and neonatal outcomes and use of medications in the prospectiveItalian P-RHEUM.it study.
Economic effects of policy options restricting antimicrobial use for high risk cattle placed in U.S. feedlots
Applications of isothermal titration calorimetry in pure and applied research from 2016 to 2020
The last 5 years have seen a series of advances in the application of isothermal titration microcalorimetry (ITC) and interpretation of ITC data. ITC has played an invaluable role in understanding multiprotein complex formation including proteolysis-targeting chimeras (PROTACS), and mitochondrial autophagy receptor Nix interaction with LC3 and GABARAP. It has also helped elucidate complex allosteric communication in protein complexes like trp RNA-binding attenuation protein (TRAP) complex. Advances in kinetics analysis have enabled the calculation of kinetic rate constants from pre-existing ITC data sets. Diverse strategies have also been developed to study enzyme kinetics and enzyme-inhibitor interactions. ITC has also been applied to study small molecule solvent and solute interactions involved in extraction, separation, and purification applications including liquid-liquid separation and extractive distillation. Diverse applications of ITC have been developed from the analysis of protein instability at different temperatures, determination of enzyme kinetics in suspensions of living cells to the adsorption of uremic toxins from aqueous streams
