65 research outputs found

    Superposition rules for higher-order systems and their applications

    Full text link
    Superposition rules form a class of functions that describe general solutions of systems of first-order ordinary differential equations in terms of generic families of particular solutions and certain constants. In this work we extend this notion and other related ones to systems of higher-order differential equations and analyse their properties. Several results concerning the existence of various types of superposition rules for higher-order systems are proved and illustrated with examples extracted from the physics and mathematics literature. In particular, two new superposition rules for second- and third-order Kummer--Schwarz equations are derived.Comment: (v2) 33 pages, some typos corrected, added some references and minor commentarie

    Lie families: theory and applications

    Full text link
    We analyze families of non-autonomous systems of first-order ordinary differential equations admitting a common time-dependent superposition rule, i.e., a time-dependent map expressing any solution of each of these systems in terms of a generic set of particular solutions of the system and some constants. We next study relations of these families, called Lie families, with the theory of Lie and quasi-Lie systems and apply our theory to provide common time-dependent superposition rules for certain Lie families.Comment: 23 pages, revised version to appear in J. Phys. A: Math. Theo

    Contribution à la géométrie conforme. Théorie des surfaces. I

    Get PDF
    corecore