4 research outputs found
Mechanism of glycogen synthase inactivation and interaction with glycogenin
Glycogen is the major glucose reserve in eukaryotes, and defects in glycogen metabolism and structure lead to disease. Glycogenesis involves interaction of glycogenin (GN) with glycogen synthase (GS), where GS is activated by glucose-6-phosphate (G6P) and inactivated by phosphorylation. We describe the 2.6 Å resolution cryo-EM structure of phosphorylated human GS revealing an autoinhibited GS tetramer flanked by two GN dimers. Phosphorylated N- and C-termini from two GS protomers converge near the G6P-binding pocket and buttress against GS regulatory helices. This keeps GS in an inactive conformation mediated by phospho-Ser641 interactions with a composite “arginine cradle”. Structure-guided mutagenesis perturbing interactions with phosphorylated tails led to increased basal/unstimulated GS activity. We propose that multivalent phosphorylation supports GS autoinhibition through interactions from a dynamic “spike” region, allowing a tuneable rheostat for regulating GS activity. This work therefore provides insights into glycogen synthesis regulation and facilitates studies of glycogen-related diseases
Cell-free culture medium of Burkholderia cepacia improves seed germination rate and seedling growth in maize (Zea mays) and rice (Oryza sativa)
The saprophytic bacterium Burkholderiacepacia has been shown to play an active role as plant growth promoting bacteria (PGPB). In this study, the ability of cell-free culture medium (CFCM) of B. cepacia to improve early developmental stages of plants has been assessed on two agronomically important crops, maize (Zeamays) and rice (Oryzasativa). Treating maize and rice seeds for 45 min before germination significantly improved seed germination and consequent seedling growth. The effect of CFCM was confirmed by the increased biomass of the shoot and, mainly, the root systems of treated seedlings. Chromatographic characterization of the CFCM revealed that the spent culture medium of B. cepacia is a complex mix of different classes of metabolites including, among others, salicylic acid, indole-3-acetic acid (IAA) and several unidentified phenolic compounds. Fractionation of the CFCM components revealed that the impressive development of the root system of CFCM-treated seedlings is due to the synergistic action of several groups of components rather than IAA alone. The data presented here suggest that a CFCM of B. cepacia can be used to improve crop germination. © Springer Science+Business Media B.V. 2009.SCOPUS: ar.jinfo:eu-repo/semantics/publishe
