63 research outputs found
Dirichlet Process Mixtures for Density Estimation in Dynamic Nonlinear Modeling: Application to GPS Positioning in Urban Canyons
International audienceIn global positioning systems (GPS), classical localization algorithms assume, when the signal is received from the satellite in line-of-sight (LOS) environment, that the pseudorange error distribution is Gaussian. Such assumption is in some way very restrictive since a random error in the pseudorange measure with an unknown distribution form is always induced in constrained environments especially in urban canyons due to multipath/masking effects. In order to ensure high accuracy positioning, a good estimation of the observation error in these cases is required. To address this, an attractive flexible Bayesian nonparametric noise model based on Dirichlet process mixtures (DPM) is introduced. Since the considered positioning problem involves elements of non-Gaussianity and nonlinearity and besides, it should be processed on-line, the suitability of the proposed modeling scheme in a joint state/parameter estimation problem is handled by an efficient Rao-Blackwellized particle filter (RBPF). Our approach is illustrated on a data analysis task dealing with joint estimation of vehicles positions and pseudorange errors in a global navigation satellite system (GNSS)-based localization context where the GPS information may be inaccurate because of hard reception conditions
A global corporate census: publicly traded and close companies in 1910
In 1910 the world had almost half a million corporations, only one-hundredth of today's total. About one-fifth—with over half of corporate capital—were publicly tradable, higher portions than today. Most publicly quoted corporations traded in Europe and the British Empire, but most close (private) corporations operated in the US, which, until the 1940s, had more corporations per capita than anywhere else. The 83 countries surveyed here differed markedly in company numbers, corporate capital/GDP ratios, and average corporate size. Enclave economies—dominated by quoted (and often foreign-owned) companies—had the largest average sizes, while other nations had more varied mixes of large quoted corporations and close company small and medium enterprises
Modeling and use of GNSS pseudorange errors in transport environment to enhance the localization performances
Les GNSS sont désormais largement présents dans le domaine des transports. Actuellement, la communauté scientifique désire développer des applications nécessitant une grande précision, disponibilité et intégrité.Ces systèmes offrent un service de position continu. Les performances sont définies par les paramètres du système mais également par l’environnement de propagation dans lequel se propagent les signaux. Les caractéristiques de propagation dans l’atmosphère sont connues. En revanche, il est plus difficile de prévoir l’impact de l’environnement proche de l’antenne, composé d’obstacles urbains. L’axe poursuivit par le LEOST et le LAGIS consiste à appréhender l’environnement et à utiliser cette information en complément de l’information GNSS. Cette approche vise à réduire le nombre de capteurs et ainsi la complexité du système et son coût. Les travaux de recherche menés dans le cadre de cette thèse permettent principalement de proposer des modélisations d'erreur de pseudodistances et des modélisations de l'état de réception encore plus réalistes. Après une étape de caractérisation de l’erreur, plusieurs modèles d’erreur de pseudodistance sont proposés. Ces modèles sont le mélange fini de gaussiennes et le mélange de processus de Dirichlet. Les paramètres du modèle sont estimés conjointement au vecteur d’état contenant la position grâce à une solution de filtrage adaptée comme le filtre particulaire Rao-Blackwellisé. L’évolution du modèle de bruit permet de s'adapter à l’environnement et donc de fournir une localisation plus précise. Les différentes étapes des travaux réalisés dans cette thèse ont été testées et validées sur données de simulation et réelles.Today, the GNSS are largely present in the transport field. Currently, the scientific community aims to develop transport applications with a high accuracy, availability and integrity. These systems offer a continuous positioning service. Performances are defined by the system parameters but also by signal environment propagation. The atmosphere propagation characteristics are well known. However, it is more difficult to anticipate and analyze the impact of the propagation environment close to the antenna which can be composed, for instance, of urban obstacles or vegetation.Since several years, the LEOST and the LAGIS research axes are driven by the understanding of the propagation environment and its use as supplementary information to help the GNSS receiver to be more pertinent. This approach aims to reduce the number of sensors in the localisation system, and consequently reduces its complexity and cost. The work performed in this thesis is devoted to provide more realistic pseudorange error models and reception channel model. After, a step of observation error characterization, several pseudorange error models have been proposed. These models are the finite gaussian mixture model and the Dirichlet process mixture. The model parameters are then estimated jointly with the state vector containing position by using adapted filtering solution like the Rao-Blackwellized particle filter. The noise model evolution allows adapting to an urban environment and consequently providing a position more accurate.Each step of this work has been tested and evaluated on simulation data and real data
Modélisation et utilisation des erreurs de pseudodistances GNSS en environnement transport pour l’amélioration des performances de localisation
Today, the GNSS are largely present in the transport field. Currently, the scientific community aims to develop transport applications with a high accuracy, availability and integrity. These systems offer a continuous positioning service. Performances are defined by the system parameters but also by signal environment propagation. The atmosphere propagation characteristics are well known. However, it is more difficult to anticipate and analyze the impact of the propagation environment close to the antenna which can be composed, for instance, of urban obstacles or vegetation.Since several years, the LEOST and the LAGIS research axes are driven by the understanding of the propagation environment and its use as supplementary information to help the GNSS receiver to be more pertinent. This approach aims to reduce the number of sensors in the localisation system, and consequently reduces its complexity and cost. The work performed in this thesis is devoted to provide more realistic pseudorange error models and reception channel model. After, a step of observation error characterization, several pseudorange error models have been proposed. These models are the finite gaussian mixture model and the Dirichlet process mixture. The model parameters are then estimated jointly with the state vector containing position by using adapted filtering solution like the Rao-Blackwellized particle filter. The noise model evolution allows adapting to an urban environment and consequently providing a position more accurate.Each step of this work has been tested and evaluated on simulation data and real data.Les GNSS sont désormais largement présents dans le domaine des transports. Actuellement, la communauté scientifique désire développer des applications nécessitant une grande précision, disponibilité et intégrité.Ces systèmes offrent un service de position continu. Les performances sont définies par les paramètres du système mais également par l’environnement de propagation dans lequel se propagent les signaux. Les caractéristiques de propagation dans l’atmosphère sont connues. En revanche, il est plus difficile de prévoir l’impact de l’environnement proche de l’antenne, composé d’obstacles urbains. L’axe poursuivit par le LEOST et le LAGIS consiste à appréhender l’environnement et à utiliser cette information en complément de l’information GNSS. Cette approche vise à réduire le nombre de capteurs et ainsi la complexité du système et son coût. Les travaux de recherche menés dans le cadre de cette thèse permettent principalement de proposer des modélisations d'erreur de pseudodistances et des modélisations de l'état de réception encore plus réalistes. Après une étape de caractérisation de l’erreur, plusieurs modèles d’erreur de pseudodistance sont proposés. Ces modèles sont le mélange fini de gaussiennes et le mélange de processus de Dirichlet. Les paramètres du modèle sont estimés conjointement au vecteur d’état contenant la position grâce à une solution de filtrage adaptée comme le filtre particulaire Rao-Blackwellisé. L’évolution du modèle de bruit permet de s'adapter à l’environnement et donc de fournir une localisation plus précise. Les différentes étapes des travaux réalisés dans cette thèse ont été testées et validées sur données de simulation et réelles
Recommended from our members
Redressement et liquidation judiciaires ::(L. no 85-98 du 25 janvier 1985, commentée article par article et D. no 85-1387 et no 85-1388 du 27 décembre 1985) /
- …
