2,989 research outputs found
Recommended from our members
Simplification, Progression and a Level Playing Field
With sufficiently well-reasoned and principled reform of tax systems, it is possible to achieve practical simplicity and a reduction in perverse incentives to a far greater degree than under any of the "flat-rate" proposals being advanced, without significant sacrifice of progressively. But it is necessary to eliminate many of the bells and whistles that confer benefits on selected constituencies, and to refrain from attempts to use the income tax as a device to encourage particular activities. There are usually more effective and transparent methods available to accomplish these objectives far more efficiently if done directly and explicitly rather than by tax tinkering motivated in part by a desire to reduce the apparent magnitude of the government "budget" by "off-budget" "tax expenditures.
Computer-aided verification in mechanism design
In mechanism design, the gold standard solution concepts are dominant
strategy incentive compatibility and Bayesian incentive compatibility. These
solution concepts relieve the (possibly unsophisticated) bidders from the need
to engage in complicated strategizing. While incentive properties are simple to
state, their proofs are specific to the mechanism and can be quite complex.
This raises two concerns. From a practical perspective, checking a complex
proof can be a tedious process, often requiring experts knowledgeable in
mechanism design. Furthermore, from a modeling perspective, if unsophisticated
agents are unconvinced of incentive properties, they may strategize in
unpredictable ways.
To address both concerns, we explore techniques from computer-aided
verification to construct formal proofs of incentive properties. Because formal
proofs can be automatically checked, agents do not need to manually check the
properties, or even understand the proof. To demonstrate, we present the
verification of a sophisticated mechanism: the generic reduction from Bayesian
incentive compatible mechanism design to algorithm design given by Hartline,
Kleinberg, and Malekian. This mechanism presents new challenges for formal
verification, including essential use of randomness from both the execution of
the mechanism and from the prior type distributions. As an immediate
consequence, our work also formalizes Bayesian incentive compatibility for the
entire family of mechanisms derived via this reduction. Finally, as an
intermediate step in our formalization, we provide the first formal
verification of incentive compatibility for the celebrated
Vickrey-Clarke-Groves mechanism
Sequential Posted Price Mechanisms with Correlated Valuations
We study the revenue performance of sequential posted price mechanisms and
some natural extensions, for a general setting where the valuations of the
buyers are drawn from a correlated distribution. Sequential posted price
mechanisms are conceptually simple mechanisms that work by proposing a
take-it-or-leave-it offer to each buyer. We apply sequential posted price
mechanisms to single-parameter multi-unit settings in which each buyer demands
only one item and the mechanism can assign the service to at most k of the
buyers. For standard sequential posted price mechanisms, we prove that with the
valuation distribution having finite support, no sequential posted price
mechanism can extract a constant fraction of the optimal expected revenue, even
with unlimited supply. We extend this result to the the case of a continuous
valuation distribution when various standard assumptions hold simultaneously.
In fact, it turns out that the best fraction of the optimal revenue that is
extractable by a sequential posted price mechanism is proportional to ratio of
the highest and lowest possible valuation. We prove that for two simple
generalizations of these mechanisms, a better revenue performance can be
achieved: if the sequential posted price mechanism has for each buyer the
option of either proposing an offer or asking the buyer for its valuation, then
a Omega(1/max{1,d}) fraction of the optimal revenue can be extracted, where d
denotes the degree of dependence of the valuations, ranging from complete
independence (d=0) to arbitrary dependence (d=n-1). Moreover, when we
generalize the sequential posted price mechanisms further, such that the
mechanism has the ability to make a take-it-or-leave-it offer to the i-th buyer
that depends on the valuations of all buyers except i's, we prove that a
constant fraction (2-sqrt{e})/4~0.088 of the optimal revenue can be always be
extracted.Comment: 29 pages, To appear in WINE 201
The Core of the Participatory Budgeting Problem
In participatory budgeting, communities collectively decide on the allocation
of public tax dollars for local public projects. In this work, we consider the
question of fairly aggregating the preferences of community members to
determine an allocation of funds to projects. This problem is different from
standard fair resource allocation because of public goods: The allocated goods
benefit all users simultaneously. Fairness is crucial in participatory decision
making, since generating equitable outcomes is an important goal of these
processes. We argue that the classic game theoretic notion of core captures
fairness in the setting. To compute the core, we first develop a novel
characterization of a public goods market equilibrium called the Lindahl
equilibrium, which is always a core solution. We then provide the first (to our
knowledge) polynomial time algorithm for computing such an equilibrium for a
broad set of utility functions; our algorithm also generalizes (in a
non-trivial way) the well-known concept of proportional fairness. We use our
theoretical insights to perform experiments on real participatory budgeting
voting data. We empirically show that the core can be efficiently computed for
utility functions that naturally model our practical setting, and examine the
relation of the core with the familiar welfare objective. Finally, we address
concerns of incentives and mechanism design by developing a randomized
approximately dominant-strategy truthful mechanism building on the exponential
mechanism from differential privacy
Budget feasible mechanisms on matroids
Motivated by many practical applications, in this paper we study budget feasible mechanisms where the goal is to procure independent sets from matroids. More specifically, we are given a matroid =(,) where each ground (indivisible) element is a selfish agent. The cost of each element (i.e., for selling the item or performing a service) is only known to the element itself. There is a buyer with a budget having additive valuations over the set of elements E. The goal is to design an incentive compatible (truthful) budget feasible mechanism which procures an independent set of the matroid under the given budget that yields the largest value possible to the buyer. Our result is a deterministic, polynomial-time, individually rational, truthful and budget feasible mechanism with 4-approximation to the optimal independent set. Then, we extend our mechanism to the setting of matroid intersections in which the goal is to procure common independent sets from multiple matroids. We show that, given a polynomial time deterministic blackbox that returns -approximation solutions to the matroid intersection problem, there exists a deterministic, polynomial time, individually rational, truthful and budget feasible mechanism with (3+1) -approximation to the optimal common independent set
- …
