604 research outputs found

    Characterization of quasi-projectiles produced in symmetric collisions studied with INDRA Comparison with models

    Full text link
    The characterization of hot quasi-projectiles produced in symmetric or quasi-symmetric reactions (Au + Au, Xe + Sn, Ni + Ni, Ar + KCl) at di erent incident energies are estimated by means of two di erent procedures. The advantages and disadvantages of each method are analyzed on the basis of simulations using events produced by two slightly di erent models: HIPSE and ELIE.Comment: A para\^itr

    Phase-space methods in nuclear reactions around the Fermi energy

    Full text link
    Some prescriptions for in-medium complex particle production in nuclear reactions are proposed. They have been implemented in two models to simulate nucleon-nucleus (nIPSE) and nucleus-nucleus (HIPSE) reactions around the Fermi energy \cite{Lac04,Lac05}. Our work emphasizes the effect of randomness in cluster formation, the importance of the nucleonic Fermi motion as well as the role of conservation laws. The key role of the phase-space exploration before and after secondary decay is underlined. This is illustrated in the case of two debated issues: the memory loss of the entrance channel in central collisions and the (N,Z)(N,Z) partitions after the pre-equilibrium stage.Comment: Proceedings of the IWM2005 workshop, Catane (Italy), Nov. 2005. DOWNLOAD HIPSE program at: http://caeinfo.in2p3.fr/theorie/theory_lacroix.htm

    Bimodality as a signal of Liquid-Gas phase transition in nuclei?

    Full text link
    We use the HIPSE (Heavy-Ion Phase-Space Exploration) Model to discuss the origin of the bimodality in charge asymmetry observed in nuclear reactions around the Fermi energy. We show that it may be related to the important angular momentum (spin) transferred into the quasi-projectile before secondary decay. As the spin overcomes the critical value, a sudden opening of decay channels is induced and leads to a bimodal distribution for the charge asymmetry. In the model, it is not assigned to a liquid-gas phase transition but to specific instabilities in nuclei with high spin. Therefore, we propose to use these reactions to study instabilities in rotating nuclear droplets.Comment: 4 pages, 4 figures Accepted to PR

    Double beta decay of 48^{48}Ca

    Get PDF
    48^{48}Ca, the lightest double beta decay candidate, is the only one simple enough to be treated exactly in the nuclear shell model. Thus, the ββ(2ν)\beta\beta(2\nu) half-life measurement, reported here, provides a unique test of the nuclear physics involved in the ββ\beta\beta matrix element calculation. Enriched 48^{48}Ca sources of two different thicknesses have been exposed in a time projection chamber, and yield T1/22ν=(4.31.1+2.4[stat.]±1.4[syst.])×1019_{1/2}^{2\nu} = (4.3^{+2.4}_{-1.1} [{\rm stat.}] \pm 1.4 [{\rm syst.}]) \times 10^{19} years, compatible with the shell model calculations.Comment: 4 pages, LaTex, 3 figures imbedded, PRL forma

    Comparison of Vlasov-Uehling-Uhlenbeck model with 4 π Heavy Ion Data

    Get PDF
    Streamer chamber data for collisions of Ar + KCl and Ar + BaI2 at 1.2 GeV/nucleon are compared with microscopic model predictions based on the Vlasov-Uehling-Uhlenbeck equation, for various density-dependent nuclear equations of state. Multiplicity distributions and inclusive rapidity and transverse momentum spectra are in good agreement. Rapidity spectra show evidence of being useful in determining whether the model uses the correct cross sections for binary collisions in the nuclear medium, and whether momentum-dependent interactions are correctly incorporated. Sideward flow results do not favor the same nuclear stiffness parameter at all multiplicities

    Measurement of collective flow in heavy ion collisions using particle pair correlations

    Get PDF
    We present a new type of flow analysis, based on a particle-pair correlation function, in which there is no need for an event-by-event determination of the reaction plane. Consequently, the need to correct for dispersion in an estimated reaction plane does not arise. Our method also offers the option to avoid any influence from particle misidentification. Using this method, streamer chamber data for collisions of Ar+KCl and Ar+BaI2 at 1.2 GeV/nucleon are compared with predictions of a nuclear transport model

    Isospin diffusion in semi-peripheral 58Ni^{58}Ni + 197Au^{197}Au collisions at intermediate energies (I): Experimental results

    Get PDF
    Isospin diffusion in semi-peripheral collisions is probed as a function of the dissipated energy by studying two systems 58Ni^{58}Ni + 58Ni^{58}Ni and 58Ni^{58}Ni + 197Au^{197}Au, over the incident energy range 52-74\AM. A close examination of the multiplicities of light products in the forward part of phase space clearly shows an influence of the isospin of the target on the neutron richness of these products. A progressive isospin diffusion is observed when collisions become more central, in connection with the interaction time

    Isospin Diffusion in 58^{58}Ni-Induced Reactions at Intermediate Energies

    Get PDF
    Isospin diffusion is probed as a function of the dissipated energy by studying two systems 58^{58}Ni+58^{58}Ni and 58^{58}Ni+197^{197}Au, over the incident energy range 52-74\AM. Experimental data are compared with the results of a microscopic transport model with two different parameterizations of the symmetry energy term. A better overall agreement between data and simulations is obtained when using a symmetry term with a potential part linearly increasing with nuclear density. The isospin equilibration time at 52 \AM{} is estimated to 130±\pm10 fm/cc

    Limitation of energy deposition in classical N body dynamics

    Full text link
    Energy transfers in collisions between classical clusters are studied with Classical N Body Dynamics calculations for different entrance channels. It is shown that the energy per particle transferred to thermalised classical clusters does not exceed the energy of the least bound particle in the cluster in its ``ground state''. This limitation is observed during the whole time of the collision, except for the heaviest system.Comment: 13 pages, 15 figures, 1 tabl
    corecore