1,313 research outputs found

    Multiple interspecies recombination events within RNA2 of Grapevine fanleaf virus and Arabis mosaic virus

    Get PDF
    Sequence alignments and SISCAN analyses inferred multiple interspecies recombination events within RNA2 of strains GHu of Grapevine fanleaf virus (GFLV) and Ta of Arabis mosaic virus (ArMV), two closely related subgroup A nepoviruses in the family Comoviridae. Interspecies recombination events were identified in the 5′ untranslated region, the putative homing protein and movement protein genes but not in the coat protein gene and 3′ untranslated region. These findings suggest a dynamic relationship between GFLV and ArMV, and a differential selection pressure on RNA2-encoded proteins with constraints in terms of function and co-adaptation that limit interspecies recombination to certain gene segment

    Dynamically Driven Evolution of the Interstellar Medium in M51

    Full text link
    We report the highest-fidelity observations of the spiral galaxy M51 in CO emission, revealing the evolution of giant molecular clouds (GMCs) vis-a-vis the large-scale galactic structure and dynamics. The most massive GMCs (so-called GMAs) are first assembled and then broken up as the gas flow through the spiral arms. The GMAs and their H2 molecules are not fully dissociated into atomic gas as predicted in stellar feedback scenarios, but are fragmented into smaller GMCs upon leaving the spiral arms. The remnants of GMAs are detected as the chains of GMCs that emerge from the spiral arms into interarm regions. The kinematic shear within the spiral arms is sufficient to unbind the GMAs against self-gravity. We conclude that the evolution of GMCs is driven by large-scale galactic dynamics --their coagulation into GMAs is due to spiral arm streaming motions upon entering the arms, followed by fragmentation due to shear as they leave the arms on the downstream side. In M51, the majority of the gas remains molecular from arm entry through the inter-arm region and into the next spiral arm passage.Comment: 6 pages, including 3 figures. Accepted, ApJ

    Interpreting physical performance in professional soccer match-play: Should we be more pragmatic in our approach?

    Get PDF
    Academic and practitioner interest in the physical performance of male professional soccer players in the competition setting determined via time-motion analyses has grown substantially over the last four decades leading to a substantial body of published research and aiding development of a more systematic evidence-based framework for physical conditioning. Findings have forcibly shaped contemporary opinions in the sport with researchers and practitioners frequently emphasising the important role that physical performance plays in match outcomes. Time-motion analyses have also influenced practice as player conditioning programmes can be tailored according to the different physical demands identified across individual playing positions. Yet despite a more systematic approach to physical conditioning, data indicate that even at the very highest standards of competition, the contemporary player is still susceptible to transient and end-game fatigue. Over the course of this article, the author suggests that a more pragmatic approach to interpreting the current body of time-motion analysis data and its application in the practical setting is nevertheless required. Examples of this are addressed using findings in the literature to examine: a) the association between competitive physical performance and ‘success’ in professional soccer, b) current approaches to interpreting differences in time-motion analysis data across playing positions and, c) whether data can realistically be used to demonstrate the occurrence of fatigue in match-play. Gaps in the current literature and directions for future research are also identified

    Dynamically Driven Evolution of the Interstellar Medium in M51

    Get PDF
    Massive star formation occurs in giant molecular clouds (GMCs); an understanding of the evolution of GMCs is a prerequisite to develop theories of star formation and galaxy evolution. We report the highest-fidelity observations of the grand-design spiral galaxy M51 in carbon monoxide (CO) emission, revealing the evolution of GMCs vis-a-vis the large-scale galactic structure and dynamics. The most massive GMCs (giant molecular associations (GMAs)) are first assembled and then broken up as the gas flow through the spiral arms. The GMAs and their H_2 molecules are not fully dissociated into atomic gas as predicted in stellar feedback scenarios, but are fragmented into smaller GMCs upon leaving the spiral arms. The remnants of GMAs are detected as the chains of GMCs that emerge from the spiral arms into interarm regions. The kinematic shear within the spiral arms is sufficient to unbind the GMAs against self-gravity. We conclude that the evolution of GMCs is driven by large-scale galactic dynamics—their coagulation into GMAs is due to spiral arm streaming motions upon entering the arms, followed by fragmentation due to shear as they leave the arms on the downstream side. In M51, the majority of the gas remains molecular from arm entry through the interarm region and into the next spiral arm passage

    Simulations of the grand design galaxy M51: a case study for analysing tidally induced spiral structure

    Full text link
    We present hydrodynamical models of the grand design spiral M51 (NGC 5194), and its interaction with its companion NGC 5195. Despite the simplicity of our models, our simulations capture the present day spiral structure of M51 remarkably well, and even reproduce details such as a kink along one spiral arm, and spiral arm bifurcations. We investigate the offset between the stellar and gaseous spiral arms, and find at most times (including the present day) there is no offset between the stars and gas to within our error bars. We also compare our simulations with recent observational analysis of M51. We compute the pattern speed versus radius, and like the observations, find no single global pattern speed. We also show that the spiral arms cannot be fitted well by logarithmic spirals. We interpret these findings as evidence that M51 does not exhibit a quasi-steady density wave, as would be predicted by density wave theory. The internal structure of M51 derives from the complicated and dynamical interaction with its companion, resulting in spiral arms showing considerable structure in the form of short-lived kinks and bifurcations. Rather than trying to model such galaxies in terms of global spiral modes with fixed pattern speeds, it is more realistic to start from a picture in which the spiral arms, while not being simple material arms, are the result of tidally induced kinematic density `waves' or density patterns, which wind up slowly over time.Comment: 23 pages, 20 figures, accepted for publication in MNRA

    Protein crystals in adenovirus type 5-infected cells: requirements for intranuclear crystallogenesis, structural and functional analysis

    Get PDF
    Intranuclear crystalline inclusions have been observed in the nucleus of epithelial cells infected with Adenovirus serotype 5 (Ad5) at late steps of the virus life cycle. Using immuno-electron microscopy and confocal microscopy of cells infected with various Ad5 recombinants modified in their penton base or fiber domains, we found that these inclusions represented crystals of penton capsomers, the heteromeric capsid protein formed of penton base and fiber subunits. The occurrence of protein crystals within the nucleus of infected cells required the integrity of the fiber knob and part of the shaft domain. In the knob domain, the region overlapping residues 489–492 in the FG loop was found to be essential for crystal formation. In the shaft, a large deletion of repeats 4 to 16 had no detrimental effect on crystal inclusions, whereas deletion of repeats 8 to 21 abolished crystal formation without altering the level of fiber protein expression. This suggested a crucial role of the five penultimate repeats in the crystallisation process. Chimeric pentons made of Ad5 penton base and fiber domains from different serotypes were analyzed with respect to crystal formation. No crystal was found when fiber consisted of shaft (S) from Ad5 and knob (K) from Ad3 (heterotypic S5-K3 fiber), but occurred with homotypic S3K3 fiber. However, less regular crystals were observed with homotypic S35-K35 fiber. TB5, a monoclonal antibody directed against the Ad5 fiber knob was found by immunofluorescence microscopy to react with high efficiency with the intranuclear protein crystals in situ. Data obtained with Ad fiber mutants indicated that the absence of crystalline inclusions correlated with a lower infectivity and/or lower yields of virus progeny, suggesting that the protein crystals might be involved in virion assembly. Thus, we propose that TB5 staining of Ad-infected 293 cells can be used as a prognostic assay for the viability and productivity of fiber-modified Ad5 vectors

    Counteracting effects operating on Src homology 2 domain-containing protein-tyrosine phosphatase 2 (SHP2) function drive selection of the recurrent Y62D and Y63C substitutions in Noonan syndrome

    Get PDF
    Activating mutations in PTPN11 cause Noonan syndrome, the most common nonchromosomal disorder affecting development and growth. PTPN11 encodes SHP2, an Src homology 2 (SH2) domain-containing protein-tyrosine phosphatase that positively modulates RAS function. Here, we characterized functionally all possible amino acid substitutions arising from single-base changes affecting codons 62 and 63 to explore the molecular mechanisms lying behind the largely invariant occurrence of the Y62D and Y63C substitutions recurring in Noonan syndrome. We provide structural and biochemical data indicating that the autoinhibitory interaction between the N-SH2 and protein-tyrosine phosphatase (PTP) domains is perturbed in both mutants as a result of an extensive structural rearrangement of the N-SH2 domain. Most mutations affecting Tyr(63) exerted an unpredicted disrupting effect on the structure of the N-SH2 phosphopeptide-binding cleft mediating the interaction of SHP2 with signaling partners. Among all the amino acid changes affecting that codon, the disease-causing mutation was the only substitution that perturbed the stability of the inactive conformation of SHP2 without severely impairing proper phosphopeptide binding of N-SH2. On the other hand, the disruptive effect of the Y62D change on the autoinhibited conformation of the protein was balanced, in part, by less efficient binding properties of the mutant. Overall, our data demonstrate that the selection-by-function mechanism acting as driving force for PTPN11 mutations affecting codons 62 and 63 implies balancing of counteracting effects operating on the allosteric control of the function of SHP2

    Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum using √s=8 TeV proton-proton collision data

    Get PDF
    A search for squarks and gluinos in final states containing high-p T jets, missing transverse momentum and no electrons or muons is presented. The data were recorded in 2012 by the ATLAS experiment in s√=8 TeV proton-proton collisions at the Large Hadron Collider, with a total integrated luminosity of 20.3 fb−1. Results are interpreted in a variety of simplified and specific supersymmetry-breaking models assuming that R-parity is conserved and that the lightest neutralino is the lightest supersymmetric particle. An exclusion limit at the 95% confidence level on the mass of the gluino is set at 1330 GeV for a simplified model incorporating only a gluino and the lightest neutralino. For a simplified model involving the strong production of first- and second-generation squarks, squark masses below 850 GeV (440 GeV) are excluded for a massless lightest neutralino, assuming mass degenerate (single light-flavour) squarks. In mSUGRA/CMSSM models with tan β = 30, A 0 = −2m 0 and μ > 0, squarks and gluinos of equal mass are excluded for masses below 1700 GeV. Additional limits are set for non-universal Higgs mass models with gaugino mediation and for simplified models involving the pair production of gluinos, each decaying to a top squark and a top quark, with the top squark decaying to a charm quark and a neutralino. These limits extend the region of supersymmetric parameter space excluded by previous searches with the ATLAS detector
    corecore