349 research outputs found
Brief for AARP as Amicus Curiae in Support of Plaintiffs-Appellees and Arguing for Affirmance
Amicus ("friend of the court") brief written by Genformatic, LLC in support of petitioners in AMP v. Myriad Genetics (Case Docket No. 2010-1406)
La fusion des macrophages : partenaires des cellules somatiques et cancéreuses ?
La fusion est un mécanisme fondamental utilisé par les organismes multicellulaires. Elle joue un rôle essentiel au cours du développement physiologique. Ainsi, la fusion est-elle le premier événement à l’origine même de la vie lors du contact fusionnel entre spermatozoïde et ovocyte. La fusion des myoblastes en myotubes participe, par la suite, à l’organisation musculaire définitive. La fusion est également rencontrée au cours de processus pathologiques. Les virus en ont fait leur quotidien pour attaquer leurs cellules cibles. La fusion macrophagique est un événement incontournable pour l’obtention de cellules ostéoclastiques et de cellules multinucléées, partenaires essentiels dans des affections comme l’ostéoporose ou les maladies inflammatoires chroniques. Pourtant, les mécanismes moléculaires impliqués dans ces différents événements sont assez mal connus. Un regain d’intérêt est néanmoins récemment apparu lorsque des cellules dérivées de la moelle osseuse ont été retrouvées différenciées en types cellulaires variés dans des tissus lésés. En effet, la fusion entre une cellule d’origine myélomonocytaire, potentiellement macrophagique, et une cellule résidente de l’organe lésé semble être à l’origine de cette plasticité inattendue. Dans cet article, Agnès Vignery revisite la fusion macrophagique et les différentes protéines qui semblent la contrôler avant de s’interroger sur la participation et la pertinence d’un mécanisme équivalent au cours de la cancérogenèse ou de la régénération tissulaire…The fusion of cells is a fundamental biological event that plays a central role in a variety of developmental and homeostatic processes. Macrophages are present in all tissues and can initiate interaction and fusion. The putative macrophage-fusion machinery is still poorly understood, but some of its components have been identified. Macrophages recognize each other as « self » in order to fuse but some essential questions remain: do macrophages fuse with somatic cells to repair tissues and organs? Do macrophages fuse with tumor cells to trigger metastasis? Agnès Vignery discusses these novel and challenging ideas in this review
Salamander Habitat Abundance Based on Water Flow
A study related to finding out a relationship between the abundance of salamanders and the flow of water in the Arcata community forest
Macrophage fusion: the making of osteoclasts and giant cells
The fusion of cells is a fundamental biological event that is essential for a variety of developmental and homeostatic processes. Fusion is required for the formation of multinucleated osteoclasts and giant cells, although the mechanisms that govern these processes are poorly understood. A new study now reveals an unexpected role for the receptor, dendritic cell–specific transmembrane protein (DC-STAMP), in this process. The potential mechanism by which DC-STAMP governs fusion and the implications of this finding will be discussed
Distinct Regions of the Large Extracellular Domain of Tetraspanin CD9 Are Involved in the Control of Human Multinucleated Giant Cell Formation
Multinucleated giant cells, formed by the fusion of monocytes/macrophages, are features of chronic granulomatous inflammation associated with infections or the persistent presence of foreign material. The tetraspanins CD9 and CD81 regulate multinucleated giant cell formation: soluble recombinant proteins corresponding to the large extracellular domain (EC2) of human but not mouse CD9 can inhibit multinucleated giant cell formation, whereas human CD81 EC2 can antagonise this effect. Tetraspanin EC2 are all likely to have a conserved three helix sub-domain and a much less well-conserved or hypervariable sub-domain formed by short helices and interconnecting loops stabilised by two or more disulfide bridges. Using CD9/CD81 EC2 chimeras and point mutants we have mapped the specific regions of the CD9 EC2 involved in multinucleated giant cell formation. These were primarily located in two helices, one in each sub-domain. The cysteine residues involved in the formation of the disulfide bridges in CD9 EC2 were all essential for inhibitory activity but a conserved glycine residue in the tetraspanin-defining ‘CCG’ motif was not. A tyrosine residue in one of the active regions that is not conserved between human and mouse CD9 EC2, predicted to be solvent-exposed, was found to be only peripherally involved in this activity. We have defined two spatially-distinct sites on the CD9 EC2 that are required for inhibitory activity. Agents that target these sites could have therapeutic applications in diseases in which multinucleated giant cells play a pathogenic role
STC1 interference on calcitonin family of receptors signaling during osteoblastogenesis via adenylate cyclase inhibition
Stanniocalcin 1 (STC1) and calcitonin gene-related peptide (CGRP) are involved in bone formation/remodeling. Here we investigate the effects of STC1 on functional heterodimer complex CALCRL/RAMP1, expression and activity during osteoblastogenesis. STC1 did not modify CALCRL and ramp 1 gene expression during osteoblastogenesis when compared to controls. However, plasma membrane spatial distribution of CALCRL/RAMP1 was modified in 7-day pre-osteoblasts exposed to either CGRP or STC1, and both peptides induced CALCRL and RAMP1 assembly. CGRP, but not STC1 stimulated cAMP accumulation in 7-day osteoblasts and in CALCRL/RAMP1 transfected HEK293 cells. Furthermore, STC1 inhibited forskolin stimulated cAMP accumulation of HEK293 cells, but not in CALCRL/RAMP1 transfected HEK293 cells. However, STC1 inhibited cAMP accumulation in calcitonin receptor (CTR) HEK293 transfected cells stimulated by calcitonin. In conclusion, STC1 signals through inhibitory G-protein modulates CGRP receptor spatial localization during osteoblastogenesis and may function as a regulatory factor interacting with calcitonin peptide members during bone formation. (C) 2015 Elsevier Ireland Ltd. All rights reserved.CAPES/CNPq (VS PNPD fellowship program); FAPERGS/CNPq [008/2009 (FCRG)]; Portuguese Foundation for Science and Technology (FCT) [PTDC/MAR/121279/2010, PEst-C/MAR/LA0015/2013, SFRH/BPD/89811/2012]; CNPq (SRT PhD fellowship program); CNPq (LAMM PhD fellowship program); CNPq (FCRG research productivity fellowship program); INCT Exitotoxicity and Neuroprotection (DOGS
The role of peptides in bone healing and regeneration: A systematic review
Background: Bone tissue engineering and the research surrounding peptides has expanded significantly over the last few decades. Several peptides have been shown to support and stimulate the bone healing response and have been proposed as therapeutic vehicles for clinical use. The aim of this comprehensive review is to present the clinical and experimental studies analysing the potential role of peptides for bone healing and bone regeneration. Methods: A systematic review according to PRISMA guidelines was conducted. Articles presenting peptides capable of exerting an upregulatory effect on osteoprogenitor cells and bone healing were included in the study. Results: Based on the available literature, a significant amount of experimental in vitro and in vivo evidence exists. Several peptides were found to upregulate the bone healing response in experimental models and could act as potential candidates for future clinical applications. However, from the available peptides that reached the level of clinical trials, the presented results are limited. Conclusion: Further research is desirable to shed more light into the processes governing the osteoprogenitor cellular responses. With further advances in the field of biomimetic materials and scaffolds, new treatment modalities for bone repair will emerge
IL-1 receptor–associated kinase M is a central regulator of osteoclast differentiation and activation
Osteoporosis is a serious problem worldwide; it is characterized by bone fractures in response to relatively mild trauma. Osteoclasts originate from the fusion of macrophages and they play a central role in bone development and remodeling via the resorption of bone. Therefore, osteoclasts are important mediators of bone loss that leads, for example, to osteoporosis. Interleukin (IL)-1 receptor (IL-1R)–associated kinase M (IRAK-M) is only expressed in cells of the myeloid lineage and it inhibits signaling downstream of IL-1R and Toll-like receptors (TLRs). However, it lacks a functional catalytic site and, thus, cannot function as a kinase. IRAK-M associates with, and prevents the dissociation of, IRAK–IRAK-4–TNF receptor–associated factor 6 from the TLR signaling complex, with resultant disruption of downstream signaling. Thus, IRAK-M acts as a dominant negative IRAK. We show here that mice that lack IRAK-M develop severe osteoporosis, which is associated with the accelerated differentiation of osteoclasts, an increase in the half-life of osteoclasts, and their activation. Ligation of IL-1R or TLRs results in hyperactivation of NF-κB and mitogen-activated protein kinase signaling pathways, which are essential for osteoclast differentiation. Thus, IRAK-M is a key regulator of the bone loss that is due to osteoclastic resorption of bone
- …
