28 research outputs found
Mechanical, antibacterial and biodegradable properties of starch film containing bacteriocin immobilized crystalline nanocellulose
Effects of Nanoparticles on Plant Growth-Promoting Bacteria in Indian Agricultural Soil
Soil bacteria are some of the key players affecting plant productivity. Soil today is exposed to emerging contaminants like metal engineered nanoparticles. The objective of this study was to evaluate the toxicological effects of silver and zinc oxide nanoparticles on bacteria classified as plant growth-promoting bacteria. Three types of bacteria—nitrogen fixers, phosphate solubilizers, and biofilm formers—were exposed to engineered nanoparticles. Initially, the effect of silver and zinc oxide nanoparticles was determined on pure cultures of the bacteria. These nanoparticles were then applied to soil to assess changes in composition of bacterial communities. Impacts of the nanoparticles were analyzed using Illumina MiSeq sequencing of 16S rRNA genes. In the soil used, relative abundances of the dominant and agriculturally significant phyla, namely, Proteobacteria, Actinobacteria, and Firmicutes, were altered in the presence of silver nanoparticles. Silver nanoparticles changed the abundance of the three phyla by 25 to 45%. Zinc oxide nanoparticles showed negligible effects at the phylum level. Thus, silver nanoparticles may impact bacterial communities in soil, and this in turn may influence processes carried out by soil bacteria
Effect of Fenton’s pretreatment on cotton cellulosic substrates to enhance its enzymatic hydrolysis response
Shifts in metabolic patterns of soil bacterial communities on exposure to metal engineered nanomaterials
Not Available
Not AvailableThe explosive growth in nanomaterial use will bring about their increased release into terrestrial ecosystems. Metal engineered nanomaterials (ENMs) that gain entry into these environments may alter the composition and activities of resident natural bacterial communities. To assess changes in community level physiological profiles (CLPP) of microbial communities in soils exposed to metal ENMs, Biolog EcoPlates were used in this exploratory comparative study. The CLPP is a rapid screening technique to characterise functional differences among heterotrophic microbial communities based on variable substrate utilization. The impacts of three metal ENMs, silver, titanium dioxide and zinc oxide, on bacterial communities were investigated using three soil types from Maharashtra, India.Not Availabl
Effects of Nanoparticles on Plant Growth-Promoting Bacteria in Indian Agricultural Soil
Soil bacteria are some of the key players affecting plant productivity. Soil today is exposed to emerging contaminants like metal engineered nanoparticles. The objective of this study was to evaluate the toxicological effects of silver and zinc oxide nanoparticles on bacteria classified as plant growth-promoting bacteria. Three types of bacteria—nitrogen fixers, phosphate solubilizers, and biofilm formers—were exposed to engineered nanoparticles. Initially, the effect of silver and zinc oxide nanoparticles was determined on pure cultures of the bacteria. These nanoparticles were then applied to soil to assess changes in composition of bacterial communities. Impacts of the nanoparticles were analyzed using Illumina MiSeq sequencing of 16S rRNA genes. In the soil used, relative abundances of the dominant and agriculturally significant phyla, namely, Proteobacteria, Actinobacteria, and Firmicutes, were altered in the presence of silver nanoparticles. Silver nanoparticles changed the abundance of the three phyla by 25 to 45%. Zinc oxide nanoparticles showed negligible effects at the phylum level. Thus, silver nanoparticles may impact bacterial communities in soil, and this in turn may influence processes carried out by soil bacteria.</jats:p
