480 research outputs found

    The degradtion of humic substance using continuous photocatalysis systems

    Full text link
    Photocatalytic oxidation is an emerging technology in water and wastewater treatment. Photocatalysis often leads to complete degradation of organic pollutants without the need for chemicals. This study investigated the degradation of humic substances in water using photocatalysis systems coupled with physio-chemical processes such as adsorption and/or flocculation. Dissolved Organic Carbon (DOC) removal of PAC-TiO2 was improved by a factor of two to three times compared with TiO2 alone. Solid Phase Micro Extraction (SPME)/Gas Chromatograph (GC) flame ionisation detector (FID) was used to investigate intermediates of photocatalytic oxidation in a batch reactor with TiO2 alone and with powder activated carbon (PAC) with TiO2. GC peaks showed that PAC-TiO2 adsorbed some by-products which were photo-resistant and prevented the reverse reaction that occurred when TiO2 was used alone. The two other types of photocatalytic reactors used were the continuous photocatalytic reactor and recirculated photocatalytic reactor. The results show that the recirculated reactor had the highest efficiency in removing organic matter in a short photo-oxidation (detention) time of less than 10min. The use of PAC-TiO2 in recirculated continuous reactor resulted in 80% removal of organic matter even when it was operated for a short detention time and allowed the use of a smaller dose of TiO2

    Simultaneous removal of particles and dissolved organic matter in floating media filter for surface water treatment

    Full text link
    This research investigated the performance of floating media filter in removing particles and dissolved organic matter from surface water. Pilot-scale study consists of floating plastic media pre-filter connected with either granular activated carbon (GAC) or sponge biological filter (BF) bed. In the floating plastic media filter, coagulation and flocculation processes using poly-aluminum chloride (PACl) as coagulant at an optimum dose of 8 mg/L helped removing particles from raw water. The floating media filter was operated a filtration rate of 11 m3/m2.h whereas those in GAC and BF units were maintained at 2 m3/m2.h. Continuous operation for over 120 days gave 98% and 99% average removal efficiencies of turbidity and UV254 in floating media filter in combination with GAC unit whereas and 78% and 52% removal efficiencies of turbidity and UV254 removal were obtained in floating media filter in combination with BF. The removal of dissolved organic carbon in GAC and BF units reduced chlorine demand for disinfection by 29% and 14%. It could also reduce the sum of trihalomethane (THMs) ratio from 1.1 to 0.1 and 0.5 respectively. © 2009 Desalination Publications

    Submerged microfiltration coupled with physcio-chemical processes as pretreatment to sea water desalination

    Full text link
    In this study, the critical flux of the submerged membrane system was experimentally evaluated when it was used for seawater with and without pre-treatment. In this study, different processes such as flocculation with ferric chloride (FeCl3) and different doses of PAC adsorption were used as a pre-treatment. The pretreatment of flocculant of 2 mg/L of FeCl3 and adsorption with the dose of 1 g/L PAC showed an improvement in the critical flux from 5 L/m2.h to 6.7 L/m2.h and 13.3 L/m2.h respectively. The performance of these pretreatments was also determined in terms of modified fouling index using ultrafilter membrane (UF-MFI). UF-MFI and SDI indicated that PAC adsorption was a better pretreatment than flocculation for the seawater used in this study. Molecular weight distribution (MWD) of seawater organic matter was also examined after different pretreatments. MWD of the raw seawater was mainly in the range from 1510 to 130 Da. It is observed that FeCl3 flocculation and PAC adsorption as pretreatments partially removed the organic matter of 1510 Da and 130Da respectively. © 2009 Desalination Publications

    AERODYNAMIC PERFORMANCE ANALYSIS OF CO-FLOW JET AIRFOIL

    Get PDF
    The work in this paper aims to increase the maximum lift coefficient of the airfoil by implementing the co-flow jet concept on NACA 0018 airfoil and also to investigate the performance of co-flow jet (CFJ) airfoil. To conduct numerical solution, RANS equations have been solved for 2D incompressible and unsteady flow using the Spalart-Allmaras turbulence model. The suction surface of the airfoil is modified by placing the injection slot near the leading edge and the suction slot near the trailing edge. A small mass of air is withdrawn into the airfoil suction slot, pressurized by a pumping system located inside the airfoil, and re-injecting into the injection slot tangentially to the main stream flow. The CFJ airfoil is enhancing the aerodynamic lift coefficient significantly compare to the baseline airfoil. And also, the numerical analysis is carried out to investigate the effect of the location of injection and suction slot. And it is observed that the aerodynamic lift coefficient of CFJ airfoil is increasing with varying the injection slot away from the leading edge

    Interobserver agreement in dysplasia grading: toward an enhanced gold standard for clinical pathology trials

    Get PDF
    Objective: Interobserver agreement in the context of oral epithelial dysplasia (OED) grading has been notoriously unreliable and can impose barriers for developing new molecular markers and diagnostic technologies. This paper aimed to report the details of a 3-stage histopathology review and adjudication process with the goal of achieving a consensus histopathologic diagnosis of each biopsy. Study Design: Two adjacent serial histologic sections of oral lesions from 846 patients were independently scored by 2 different pathologists from a pool of 4. In instances where the original 2 pathologists disagreed, a third, independent adjudicating pathologist conducted a review of both sections. If a majority agreement was not achieved, the third stage involved a face-to-face consensus review. Results: Individual pathologist pair κ values ranged from 0.251 to 0.706 (fair-good) before the 3-stage review process. During the initial review phase, the 2 pathologists agreed on a diagnosis for 69.9% of the cases. After the adjudication review by a third pathologist, an additional 22.8% of cases were given a consensus diagnosis (agreement of 2 out of 3 pathologists). After the face-to-face review, the remaining 7.3% of cases had a consensus diagnosis. Conclusions: The use of the defined protocol resulted in a substantial increase (30%) in diagnostic agreement and has the potential to improve the level of agreement for establishing gold standards for studies based on histopathologic diagnosis

    Why I tense up when you watch me: inferior parietal cortex mediates an audience’s influence on motor performance

    Get PDF
    The presence of an evaluative audience can alter skilled motor performance through changes in force output. To investigate how this is mediated within the brain, we emulated real-time social monitoring of participants’ performance of a fine grip task during functional magnetic resonance neuroimaging. We observed an increase in force output during social evaluation that was accompanied by focal reductions in activity within bilateral inferior parietal cortex. Moreover, deactivation of the left inferior parietal cortex predicted both inter- and intra-individual differences in socially-induced change in grip force. Social evaluation also enhanced activation within the posterior superior temporal sulcus, which conveys visual information about others’ actions to the inferior parietal cortex. Interestingly, functional connectivity between these two regions was attenuated by social evaluation. Our data suggest that social evaluation can vary force output through the altered engagement of inferior parietal cortex; a region implicated in sensorimotor integration necessary for object manipulation, and a component of the action-observation network which integrates and facilitates performance of observed actions. Social-evaluative situations may induce high-level representational incoherence between one’s own intentioned action and the perceived intention of others which, by uncoupling the dynamics of sensorimotor facilitation, could ultimately perturbe motor output

    Kinetics and Thermodynamics Study of Methylene Blue Adsorption to Sucrose- and Urea-Derived Nitrogen-Enriched, Hierarchically Porous Carbon Activated by KOH and H3PO4.

    Get PDF
    Hierarchically porous nitrogen-enriched carbon materials synthesized by polymerization of sucrose and urea (SU) were activated by KOH and H3PO4 (SU-KOH and SU-H3PO4, respectively). Characterization was undertaken and the synthesized materials were tested for their ability to adsorb methylene blue (MB). Scanning electron microscopic images along with the Brunauer-Emmett-Teller (BET) surface area analysis revealed the presence of a hierarchically porous system. X-ray photoelectron spectroscopy (XPS) confirms the surface oxidation of SU upon activation with KOH and H3PO4. The best conditions for removing dyes utilizing both activated adsorbents were determined by varying the pH, contact time, adsorbent dosage, and dye concentration. Adsorption kinetics were evaluated, and the adsorption of MB followed second-order kinetics, suggesting the chemisorption of MB to both SU-KOH and SU-H3PO4. Times taken to reach the equilibrium by SU-KOH and SU-H3PO4 were 180 and 30 min, respectively. The adsorption isotherm data were fitted to the Langmuir, Freundlich, Temkin, and Dubinin models. Data were best described by the Temkin isotherm model for SU-KOH and the Freundlich isotherm model for SU-H3PO4. Thermodynamics of the adsorption of MB to the adsorbent was determined by varying the temperature in the range of 25-55 °C. Adsorption of MB increased with increasing temperature, suggesting that the adsorption process is endothermic. The highest adsorption capacities of SU-KOH and SU-H3PO4 (1268 and 897 mg g-1, respectively) were obtained at 55 °C. Synthesized adsorbents were effective in removing MB for five cycles with some loss in activity. The results of this study show that SU activated by KOH and H3PO4 are environmentally benign, favorable, and effective adsorbents for MB adsorption

    In-line flocculation-filtration as pre-treatment to reverse osmosis desalination

    Full text link
    In this paper the performance of single and dual media filters with in-line flocculation have been examined as pretreatment to seawater reverse osmosis (SWRO). A comparison of filter performance was made between single medium filter (80 cm) consisting of sand or anthracite, and dual media filter consisting of sand (40 cm at the bottom) and anthracite (40 cm on top). Short term (6 hours) experiments were conducted with in-line coagulation followed by direct filtration. Filtration velocities of 5 m/h and 10 m/h were used. The performances of these filters were assessed in terms of turbidity removal, head loss build-up, and organic compound removal in terms of molecular weight distribution (MWD). The efficiency of the filter as pretreatment was evaluated in terms of silt density index (SDI) and modified fouling index (MFI). It was found that the turbidity removal was high and all the filters produced more or less same quality water. There was a slower buildup of head loss for coarser filter medium. A post treatment of reverse osmosis after an inline-flocculation-dual media filtration showed lower normalized flux decline (J/J0) (0.35 to 0.22 during the first 20 hours operation) while, seawater without any pretreatment showed steeper flux decline (0.18 to 0.11 at first 20 hours operation) in RO. © 2009

    ‘Cytology-on-a-chip’ based sensors for monitoring of potentially malignant oral lesions

    Get PDF
    Despite significant advances in surgical procedures and treatment, long-term prognosis for patients with oral cancer remains poor, with survival rates among the lowest of major cancers. Better methods are desperately needed to identify potential malignancies early when treatments are more effective. Objective To develop robust classification models from cytology-on-a-chip measurements that mirror diagnostic performance of gold standard approach involving tissue biopsy. Materials and methods Measurements were recorded from 714 prospectively recruited patients with suspicious lesions across 6 diagnostic categories (each confirmed by tissue biopsy -histopathology) using a powerful new ‘cytology-on-a-chip’ approach capable of executing high content analysis at a single cell level. Over 200 cellular features related to biomarker expression, nuclear parameters and cellular morphology were recorded per cell. By cataloging an average of 2000 cells per patient, these efforts resulted in nearly 13 million indexed objects. Results Binary “low-risk”/“high-risk” models yielded AUC values of 0.88 and 0.84 for training and validation models, respectively, with an accompanying difference in sensitivity + specificity of 6.2%. In terms of accuracy, this model accurately predicted the correct diagnosis approximately 70% of the time, compared to the 69% initial agreement rate of the pool of expert pathologists. Key parameters identified in these models included cell circularity, Ki67 and EGFR expression, nuclear-cytoplasmic ratio, nuclear area, and cell area. Conclusions This chip-based approach yields objective data that can be leveraged for diagnosis and management of patients with PMOL as well as uncovering new molecular-level insights behind cytological differences across the OED spectrum
    corecore