406 research outputs found

    Maternal and Neonatal Exposure to Environmental Tobacco Smoke Targets Pro-Inflammatory Genes in Neonatal Arteries

    Get PDF
    Maternal mainstream tobacco smoking is known to have adverse outcomes on fetal respiratory function; however, no data is currently available on the effects of passive exposure to tobacco smoking and environmental tobacco smoke (ETS) on fetal systemic arterial structure and function. Eight pregnant rhesus macaque monkeys were studied at the California Regional Primate Research Center breeding colony. The estimated gestational age for each dam was established by sonography performed before gestational day 40. Two inhalation chambers were used, each with an air capacity of 3.5 m3, and each housed two dams. Aged and diluted sidestream smoke was used as a surrogate for ETS. Exposure to ETS (1 mg/m3) occurred for 6 h/day, 5 days/week, beginning on gestational day 100. All dams were allowed to give birth spontaneously and then ETS exposure continued 70–80 days postnatally with the chamber containing both the mother and infant. Carotid arteries from four control (C) and four ETS-treated newborns were analyzed for mRNA by gene macroarray and for protein by Western blotting. A total of 588 cardiovascular genes were studied. Four genes were upregulated by ETS compared to C, and nine genes were downregulated (≥2-fold change). Three genes were selected for further study. Following ETS exposure, neonatal carotid arteries of non-human primates manifested evidence of inflammation with increased gene and protein expression of LFA-1 and RANTES, proteins that are recognized to be important in vascular adhesion and inflammation, and downregulation of expression for the receptor for VEGF, which has a key role in angiogenesis. Prenatal and postnatal exposure to ETS increases expression of pro-inflammatory genes and may be responsible for early arterial vascular remodeling that is predisposing to a subsequent vascular disease

    Coordinated optimization of visual cortical maps (II) Numerical studies

    Get PDF
    It is an attractive hypothesis that the spatial structure of visual cortical architecture can be explained by the coordinated optimization of multiple visual cortical maps representing orientation preference (OP), ocular dominance (OD), spatial frequency, or direction preference. In part (I) of this study we defined a class of analytically tractable coordinated optimization models and solved representative examples in which a spatially complex organization of the orientation preference map is induced by inter-map interactions. We found that attractor solutions near symmetry breaking threshold predict a highly ordered map layout and require a substantial OD bias for OP pinwheel stabilization. Here we examine in numerical simulations whether such models exhibit biologically more realistic spatially irregular solutions at a finite distance from threshold and when transients towards attractor states are considered. We also examine whether model behavior qualitatively changes when the spatial periodicities of the two maps are detuned and when considering more than 2 feature dimensions. Our numerical results support the view that neither minimal energy states nor intermediate transient states of our coordinated optimization models successfully explain the spatially irregular architecture of the visual cortex. We discuss several alternative scenarios and additional factors that may improve the agreement between model solutions and biological observations.Comment: 55 pages, 11 figures. arXiv admin note: substantial text overlap with arXiv:1102.335

    Molecular dissection of the migrating posterior lateral line primordium during early development in zebrafish

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Development of the posterior lateral line (PLL) system in zebrafish involves cell migration, proliferation and differentiation of mechanosensory cells. The PLL forms when cranial placodal cells delaminate and become a coherent, migratory primordium that traverses the length of the fish to form this sensory system. As it migrates, the primordium deposits groups of cells called neuromasts, the specialized organs that contain the mechanosensory hair cells. Therefore the primordium provides both a model for studying collective directional cell migration and the differentiation of sensory cells from multipotent progenitor cells.</p> <p>Results</p> <p>Through the combined use of transgenic fish, Fluorescence Activated Cell Sorting and microarray analysis we identified a repertoire of key genes expressed in the migrating primordium and in differentiated neuromasts. We validated the specific expression in the primordium of a subset of the identified sequences by quantitative RT-PCR, and by <it>in situ </it>hybridization. We also show that interfering with the function of two genes, <it>f11r </it>and <it>cd9b</it>, defects in primordium migration are induced. Finally, pathway construction revealed functional relationships among the genes enriched in the migrating cell population.</p> <p>Conclusions</p> <p>Our results demonstrate that this is a robust approach to globally analyze tissue-specific expression and we predict that many of the genes identified in this study will show critical functions in developmental events involving collective cell migration and possibly in pathological situations such as tumor metastasis.</p

    Left Atrial Venoarterial Extracorporeal Membrane Oxygenation for Acute Aortic Regurgitation and Cardiogenic Shock

    Get PDF
    A 51-year-old man with past medical history of bioprosthetic aortic valve replacement presented in cardiogenic shock secondary to acute bioprosthesis degeneration with severe aortic regurgitation. Venoarterial extracorporeal membrane oxygenation is contraindicated in patients with severe AI. Use of left atrial venoarterial extracorporeal membrane oxygenation resulted in hemodynamic improvement, allowing patient stabilization for emergency valve-in-valve transcatheter aortic valve replacement

    Mechanisms of T cell organotropism

    Get PDF
    F.M.M.-B. is supported by the British Heart Foundation, the Medical Research Council of the UK and the Gates Foundation

    National Landscape of Hospitalizations in Patients with Left Ventricular Assist Device. Insights from the National Readmission Database 2010-2015

    Get PDF
    The number of patients with left ventricular assist devices (LVAD) has increased over the years and it is important to identify the etiologies for hospital admission, as well as the costs, length of stay and in-hospital complications in this patient group. Using the National Readmission Database from 2010 to 2015, we identified patients with a history of LVAD placement using International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) code V43.21. We aimed to identify the etiologies for hospital admission, patient characteristics, and in-hospital outcomes. We identified a total of 15,996 patients with an LVAD, the mean age was 58 years and 76% were males. The most common cause of hospital readmission after LVAD was heart failure (HF, 13%), followed by gastrointestinal (GI) bleed (11.8%), device complication (11.5%), and ventricular tachycardia/fibrillation (4.2%). The median length of stay was 6 days (3-11 days) and the median hospital costs was $12,723 USD. The in-hospital mortality was 3.9%, blood transfusion was required in 26.8% of patients, 20.5% had acute kidney injury, 2.8% required hemodialysis, and 6.2% of patients underwent heart transplantation. Interestingly, the most common cause of readmission was the same as the diagnosis for the preceding admission. One in every four LVAD patients experiences a readmission within 30 days of a prior admission, most commonly due to HF and GI bleeding. Interventions to reduce HF readmissions, such as speed optimization, may be one means of improving LVAD outcomes and resource utilization

    Relationship between age at menopause, obesity, and incident heart failure: The Atherosclerosis Risk in Communities Study

    Get PDF
    Background The mechanisms linking menopausal age and heart failure (HF) incidence are controversial. We investigated for heterogeneity by obesity on the relationship between menopausal age and HF incidence. Methods and Results Using postmenopausal women who attended the Atherosclerosis Risk in Communities Study Visit 4, we estimated hazard ratios of incident HF associated with menopausal age using Cox proportional hazards models, testing for effect modification by obesity and adjusting for HF risk factors. Women were categorized by menopausal age: \u3c45 years, 45 to 49 years, 50 to 54 years, and ≥55 years. Among 4441 postmenopausal women, aged 63.5±5.5 years, there were 903 incident HF events over a mean follow-up of 16.5 years. The attributable risk of generalized and central obesity for HF incidence was greatest among women who experienced menopause at age ≥55 years: 11.09/1000 person-years and 7.38/1000 person-years, respectively. There were significant interactions of menopausal age with body mass index and waist circumference for HF incidence
    corecore