6,268 research outputs found

    Ionized gas outflows and global kinematics of low-z luminous star forming galaxies

    Full text link
    We study the kinematic properties of the ambient ionized ISM and ionized gas outflows in a large and representative sample of local luminous and ultraluminous infrared galaxies (U/LIRGs) (58 systems, 75 galaxies), on the basis of integral field spectroscopy (IFS)-based high S/N integrated spectra at galactic and sub-galactic, i.e. star forming (SF) clumps, scales. Ambient ionized gas. The velocity dispersion of the ionized ISM in U/LIRGs ( ~ 70 kms-1) is larger than in lower luminosity local star forming galaxies ( ~ 25 kms-1). While for isolated disc LIRGs star formation appears to sustain turbulence, gravitational energy release associated to interactions and mergers plays an important role driving sigma in the U/LIRG range. We also find that the impact of an AGN in ULIRGs is strong, increasing sigma by a factor 1.5 on average. The observed weak dependency of sigma with SFR surface density for local U/LIRGs is in very good agreement with that measured in some high-z samples. Ionized outflows. The presence of ionized gas outflows in U/LIRGs seems universal based on the detection of a broad, usually blueshifted, Halpha line. AGNs in U/LIRGs are able to generate faster (x2) and more massive (x1.4) ionized gas outflows than pure starbursts. The derived ionized mass loading factors are in general below one, with only a few AGNs above this limit. Only a small fraction of the ionized material from low mass LIRGs (log(Mdyn/Msun) < 10.4) could reach the intergalactic medium, with more massive galaxies retaining the gas. The observed average outflow properties in U/LIRGs are similar to high-z galaxies of comparable SFR. In the bright SF clumps found in LIRGs, ionized gas outflows appear to be very common. For a given SFR surface density, outflows in LIRG clumps would be about one to two orders of magnitude less energetic than those launched by clumps in high-z SF galaxies.Comment: 36 pages, 20 figures, 6 tables. Accepted for publication in A&

    Low-Ionization Emission Regions in Quasars: Gas Properties Probed with Broad O I and Ca II Lines

    Full text link
    We have compiled the emission-line fluxes of O I 8446, O I 11287, and the near-IR Ca II triplet (8579) observed in 11 quasars. These lines are considered to emerge from the same gas as do the Fe II lines in the low-ionized portion of the broad emission line region (BELR). The compiled quasars are distributed over wide ranges of redshift (0.06 < z < 1.08) and of luminosity (-29.8 < M_B < -22.1), thus representing a useful sample to investigate the line-emitting gas properties in various quasar environments. The measured line strengths and velocities, as functions of the quasar properties, are analyzed using photoionization model calculations. We found that the flux ratio between Ca II and O I 8446 is hardly dependent on the redshift or luminosity, indicating similar gas density in the emission region from quasar to quasar. On the other hand, a scatter of the O I 11287/8446 ratios appears to imply the diversity of the ionization parameter. These facts invoke a picture of the line-emitting gases in quasars that have similar densities and are located at regions exposed to various ionizing radiation fluxes. The observed O I line widths are found to be remarkably similar over more than 3 orders of magnitude in luminosity, which indicates a kinematically determined location of the emission region and is in clear contrast to the well-studied case of H I lines. We also argue about the dust presence in the emission region since the region is suggested to be located near the dust sublimation point at the outer edge of the BELR.Comment: Accepted for publication in ApJ; minor rewordings mad

    A vestige low metallicity gas shell surrounding the radio galaxy 0943-242 at z=2.92

    Get PDF
    Observations are presented showing the doublet CIV 1550 absorption lines superimposed on the CIV emission in the radio galaxy 0943-242. Within the errors, the redshift of the absorption system that has a column density of N_CIV = 10^{14.5 +- 0.1} cm-2 coincides with that of the deep Ly-alpha absorption trough observed by Rottgering et al. (1995). The gas seen in absorption has a resolved spatial extent of at least 13 kpc (the size of the extended emission line region). We first model the absorption and emission gas as co-spatial components with the same metallicity and degree of excitation. Using the information provided by the emission and absorption line ratios of CIV and Ly-alpha, we find that the observed quantities are incompatible with photoionization or collisional ionization of cloudlets with uniform properties. We therefore reject the possibility that the absorption and emission phases are co-spatial and favour the explanation that the absorption gas has low metallicity and is located further away from the host galaxy (than the emission line gas). The estimated low metallicity for the absorption gas in 0943-242 (Z \~ 1% solar) and its proposed location -outer halo outside the radio cocoon- suggest that its existence preceeds the observed AGN phase and is a vestige of the initial starburst at the onset of formation of the parent galaxy.Comment: 11 pages,5 figures, A&A accepte

    Jet-gas interactions in z~2.5 radio galaxies: evolution of the ultraviolet line and continuum emission with radio morphology

    Full text link
    We present an investigation into the nature of the jet-gas interactions in a sample of 10 radio galaxies at 2.3<z<2.9 using deep spectroscopy of the UV line and continuum emission obtained at Keck II and the Very Large Telescope. Kinematically perturbed gas, which we have shown to be within the radio structure in previous publications, is always blueshifted with respect to the kinematically quiescent gas, is usually spatially extended, and is usually detected on both sides of the nucleus. In the three objects from this sample for which we are able to measure line ratios for both the perturbed and quiescent gases, we suggest that the former has a lower ionization state than the latter. We propose that the perturbed gas is part of a jet-induced outflow, with dust obscuring the outflowing gas that lies on the far side of the object. The spatial extent of the blueshifted perturbed gas, typically ~35 kpc, implies that the dust is spatially extended at least on similar spatial scales. We also find interesting interrelationships between UV line, UV continuum and radio continuum properties of this sample.Comment: Accepted for publication in MNRA

    The large scale distribution of warm ionized gas around nearby radio galaxies with jet-cloud interactions

    Get PDF
    Deep, narrow-band Halpha observations taken with the TAURUS Tunable Filter (TTF) on the 4.2m WHT telescope are presented for two nearby radio galaxies with strong jet-cloud interactions. Although the brightest emission line components are closely aligned with the radio jets --- providing nearby examples of the ``alignment effect'' most commonly observed in high redshift (z > 0.5) radio galaxies --- lower surface brightness emission line structures are detected at large distances (10's of kpc) from the radio jet axis. These latter structures cannot be reconciled with anisotropic illumination of the ISM by obscured quasar-like sources, since parts of the structures lay outside any plausible quasar ionization cones. Rather, the distribution of the emission lines around the fringes of the extended radio lobes suggests that the gas is ionized either by direct interaction with the radio components, or by the diffuse photoionizing radiation fields produced in the shocks generated in such interactions. These observations serve to emphasise that the ionizing effects of the radio components can extend far from the radio jet axes, and that deep emission line imaging observations are required to reveal the true distribution of warm gas in the host galaxies. We expect future deep imaging observations to reveal similar structures perpendicular to the radio axes in the high-z radio galaxies.Comment: 18 pages, 4 figures, to be published in MNRA
    corecore