10 research outputs found
A Real World Experience of Guidewire-Induced Perforations during Percutaneous Intervention and Their Successful Management
Complication rates following percutaneous interventions have decreased over the past decade due to advancement in both interventional equipment and procedure technique. Despite these advances, the risk of iatrogenic perforations still exists with associated high morbidity and mor-tality. We are presenting three cases of guidewire-induced perforations including coronary artery and renal artery perforation with their complications and successful management in these case-series
A Real World Experience of Guidewire-Induced Perforations during Percutaneous Intervention and Their Successful Management
Association between functional TERT promoter polymorphism rs2853669 and cervical cancer risk in South Indian women
Expression profiling of long non-coding RNA identifies linc-RoR as a prognostic biomarker in oral cancer
Oral squamous cell carcinoma is the most aggressive cancer that is associated with high recurrence, metastasis, and poor treatment outcome. Dysregulation of long non-coding RNAs has been shown to promote tumor growth and metastasis in several cancers. In this study, we investigated the expression of 11 selected long non-coding RNAs that are associated with cell proliferation, metastasis, and tumor suppression in oral squamous cell carcinomas and normal tissues by quantitative real-time polymerase chain reaction. Out of the 11 long non-coding RNAs profiled, 9 were significantly overexpressed in tumors with tobacco chewing history. Moreover, the long non-coding RNA profile was similar to the head and neck cancer datasets of The Cancer Genome Atlas database. Linc-RoR, a regulator of reprogramming, implicated in tumorigenesis was found to be overexpressed in undifferentiated tumors and showed strong association with tumor recurrence and poor therapeutic response. In oral squamous cell carcinomas, for the first time, we observed linc-RoR overexpression, downregulation of miR-145-5p, and overexpression of c-Myc, Klf4, Oct4, and Sox2, suggesting the existence of linc-RoR-mediated competing endogenous RNA network in undifferentiated tumors. Taken together, this study demonstrated the association of linc-RoR overexpression in undifferentiated oral tumors and its prognostic value to predict the therapeutic response.</jats:p
Absence of the TP53 Poly-A Signal Sequence Variant rs78378222 in Oral, Cervical and Breast Cancers in South India
TERT promoter hot spot mutations are frequent in Indian cervical and oral squamous cell carcinomas
Erratum to: TERT promoter hot spot mutations are frequent in Indian cervical and oral squamous cell carcinomas
ATR inhibition overcomes platinum tolerance associated with ERCC1- and p53-deficiency by inducing replication catastrophe
Abstract
ERCC1/XPF is a heterodimeric DNA endonuclease critical for repair of certain chemotherapeutic agents. We recently identified that ERCC1- and p53-deficient lung cancer cells are tolerant to platinum-based chemotherapy. ATR inhibition synergistically re-stored platinum sensitivity to platinum tolerant ERCC1-deficient cells. Mechanistically we show this effect is reliant upon several functions of ATR including replication fork protection and altered cell cycle checkpoints. Utilizing an inhibitor of replication protein A (RPA), we further demonstrate that replication fork protection and RPA availability are critical for platinum-based drug tolerance. Dual treatment led to increased formation of DNA double strand breaks and was associated with chromosome pulverization. Combination treatment was also associated with increased micronuclei formation which were capable of being bound by the innate immunomodulatory factor, cGAS, suggesting that combination platinum and ATR inhibition may also enhance response to immunotherapy in ERCC1-deficient tumors. In vivo studies demonstrate a significant effect on tumor growth delay with combination therapy compared with single agent treatment. Results of this study have led to the identification of a feasible therapeutic strategy combining ATR inhibition with platinum and potentially immune checkpoint blockade inhibitors to overcome platinum tolerance in ERCC1-deficient, p53-mutant lung cancers.</jats:p
ATR inhibition overcomes platinum tolerance associated with ERCC1- and p53-deficiency by inducing replication catastrophe
ERCC1/XPF is a heterodimeric DNA endonuclease critical for repair of certain chemotherapeutic agents. We recently identified that ERCC1- and p53-deficient lung cancer cells are tolerant to platinum-based chemotherapy. ATR inhibition synergistically re-stored platinum sensitivity to platinum tolerant ERCC1-deficient cells. Mechanistically we show this effect is reliant upon several functions of ATR including replication fork protection and altered cell cycle checkpoints. Utilizing an inhibitor of replication protein A (RPA), we further demonstrate that replication fork protection and RPA availability are critical for platinum-based drug tolerance. Dual treatment led to increased formation of DNA double strand breaks and was associated with chromosome pulverization. Combination treatment was also associated with increased micronuclei formation which were capable of being bound by the innate immunomodulatory factor, cGAS, suggesting that combination platinum and ATR inhibition may also enhance response to immunotherapy in ERCC1-deficient tumors. In vivo studies demonstrate a significant effect on tumor growth delay with combination therapy compared with single agent treatment. Results of this study have led to the identification of a feasible therapeutic strategy combining ATR inhibition with platinum and potentially immune checkpoint blockade inhibitors to overcome platinum tolerance in ERCC1-deficient, p53-mutant lung cancers
