1,627 research outputs found

    Disambiguating the role of blood flow and global signal with partial information decomposition

    Get PDF
    Global signal (GS) is an ubiquitous construct in resting state functional magnetic resonance imaging (rs-fMRI), associated to nuisance, but containing by definition most of the neuronal signal. Global signal regression (GSR) effectively removes the impact of physiological noise and other artifacts, but at the same time it alters correlational patterns in unpredicted ways. Performing GSR taking into account the underlying physiology (mainly the blood arrival time) has been proven to be beneficial. From these observations we aimed to: 1) characterize the effect of GSR on network-level functional connectivity in a large dataset; 2) assess the complementary role of global signal and vessels; and 3) use the framework of partial information decomposition to further look into the joint dynamics of the global signal and vessels, and their respective influence on the dynamics of cortical areas. We observe that GSR affects intrinsic connectivity networks in the connectome in a non-uniform way. Furthermore, by estimating the predictive information of blood flow and the global signal using partial information decomposition, we observe that both signals are present in different amounts across intrinsic connectivity networks. Simulations showed that differences in blood arrival time can largely explain this phenomenon, while using hemodynamic and calcium mouse recordings we were able to confirm the presence of vascular effects, as calcium recordings lack hemodynamic information. With these results we confirm network-specific effects of GSR and the importance of taking blood flow into account for improving de-noising methods. Additionally, and beyond the mere issue of data denoising, we quantify the diverse and complementary effect of global and vessel BOLD signals on the dynamics of cortical areas

    Mind over chatter: plastic up-regulation of the fMRI alertness network by EEG neurofeedback

    Get PDF
    EEG neurofeedback (NFB) is a brain-computer interface (BCI) approach used to shape brain oscillations by means of real-time feedback from the electroencephalogram (EEG), which is known to reflect neural activity across cortical networks. Although NFB is being evaluated as a novel tool for treating brain disorders, evidence is scarce on the mechanism of its impact on brain function. In this study with 34 healthy participants, we examined whether, during the performance of an attentional auditory oddball task, the functional connectivity strength of distinct fMRI networks would be plastically altered after a 30-min NFB session of alpha-band reduction (n=17) versus a sham-feedback condition (n=17). Our results reveal that compared to sham, NFB induced a specific increase of functional connectivity within the alertness/salience network (dorsal anterior and mid cingulate), which was detectable 30 minutes after termination of training. Crucially, these effects were significantly correlated with reduced mind-wandering 'on-task' and were coupled to NFB-mediated resting state reductions in the alpha-band (8-12 Hz). No such relationships were evident for the sham condition. Although group default-mode network (DMN) connectivity was not significantly altered following NFB, we observed a positive association between modulations of resting alpha amplitude and precuneal connectivity, both correlating positively with frequency of mind-wandering. Our findings demonstrate a temporally direct, plastic impact of NFB on large-scale brain functional networks, and provide promising neurobehavioral evidence supporting its use as a noninvasive tool to modulate brain function in health and disease

    Block Coordinate Descent for Sparse NMF

    Get PDF
    Nonnegative matrix factorization (NMF) has become a ubiquitous tool for data analysis. An important variant is the sparse NMF problem which arises when we explicitly require the learnt features to be sparse. A natural measure of sparsity is the L0_0 norm, however its optimization is NP-hard. Mixed norms, such as L1_1/L2_2 measure, have been shown to model sparsity robustly, based on intuitive attributes that such measures need to satisfy. This is in contrast to computationally cheaper alternatives such as the plain L1_1 norm. However, present algorithms designed for optimizing the mixed norm L1_1/L2_2 are slow and other formulations for sparse NMF have been proposed such as those based on L1_1 and L0_0 norms. Our proposed algorithm allows us to solve the mixed norm sparsity constraints while not sacrificing computation time. We present experimental evidence on real-world datasets that shows our new algorithm performs an order of magnitude faster compared to the current state-of-the-art solvers optimizing the mixed norm and is suitable for large-scale datasets

    Characterization of groups using composite kernels and multi-source fMRI analysis data: application to schizophrenia

    Get PDF
    Pattern classification of brain imaging data can enable the automatic detection of differences in cognitive processes of specific groups of interest. Furthermore, it can also give neuroanatomical information related to the regions of the brain that are most relevant to detect these differences by means of feature selection procedures, which are also well-suited to deal with the high dimensionality of brain imaging data. This work proposes the application of recursive feature elimination using a machine learning algorithm based on composite kernels to the classification of healthy controls and patients with schizophrenia. This framework, which evaluates nonlinear relationships between voxels, analyzes whole-brain fMRI data from an auditory task experiment that is segmented into anatomical regions and recursively eliminates the uninformative ones based on their relevance estimates, thus yielding the set of most discriminative brain areas for group classification. The collected data was processed using two analysis methods: the general linear model (GLM) and independent component analysis (ICA). GLM spatial maps as well as ICA temporal lobe and default mode component maps were then input to the classifier. A mean classification accuracy of up to 95% estimated with a leave-two-out cross-validation procedure was achieved by doing multi-source data classification. In addition, it is shown that the classification accuracy rate obtained by using multi-source data surpasses that reached by using single-source data, hence showing that this algorithm takes advantage of the complimentary nature of GLM and ICAPublicad

    Combination of Resting State fMRI, DTI, and sMRI Data to Discriminate Schizophrenia by N-way MCCA + jICA

    Get PDF
    Multimodal brain imaging data have shown increasing utility in answering both scientifically interesting and clinically relevant questions. Each brain imaging technique provides a different view of brain function or structure, while multimodal fusion capitalizes on the strength of each and may uncover hidden relationships that can merge findings from separate neuroimaging studies. However, most current approaches have focused on pair-wise fusion and there is still relatively little work on N-way data fusion and examination of the relationships among multiple data types. We recently developed an approach called “mCCA + jICA” as a novel multi-way fusion method which is able to investigate the disease risk factors that are either shared or distinct across multiple modalities as well as the full correspondence across modalities. In this paper, we applied this model to combine resting state fMRI (amplitude of low-frequency fluctuation, ALFF), gray matter (GM) density, and DTI (fractional anisotropy, FA) data, in order to elucidate the abnormalities underlying schizophrenia patients (SZs, n = 35) relative to healthy controls (HCs, n = 28). Both modality-common and modality-unique abnormal regions were identified in SZs, which were then used for successful classification for seven modality-combinations, showing the potential for a broad applicability of the mCCA + jICA model and its results. In addition, a pair of GM-DTI components showed significant correlation with the positive symptom subscale of Positive and Negative Syndrome Scale (PANSS), suggesting that GM density changes in default model network along with white-matter disruption in anterior thalamic radiation are associated with increased positive PANSS. Findings suggest the DTI anisotropy changes in frontal lobe may relate to the corresponding functional/structural changes in prefrontal cortex and superior temporal gyrus that are thought to play a role in the clinical expression of SZ
    corecore