38 research outputs found
Teachers’ Attitudes toward Problem Texts in Literature Classes
Contemporary youth literature is characterised by deviation from the traditional pattern of obedient child and a happy childhood. The topics on which the writers in Slovenia in the seventies and especially in the nineties openly wrote, have become problem or taboo – so denoted by certain groups, especially those of teachers and parents.
The article presents the views of Slovenian primary school teachers and teachers of Slovenian towards discussing problem texts in literature classes in basic school. On the basis of empirical non-experimental research, which included 33 teachers of Slovenian and 58 primary school teachers, statistically significant difference in defining the suitability of topics, and in relation to problem texts have been found
A Lattice-Boltzmann model for suspensions of self-propelling colloidal particles
We present a Lattice-Boltzmann method for simulating self-propelling (active)
colloidal particles in two-dimensions. Active particles with symmetric and
asymmetric force distribution on its surface are considered. The velocity field
generated by a single active particle, changing its orientation randomly, and
the different time scales involved are characterized in detail. The steady
state speed distribution in the fluid, resulting from the activity, is shown to
deviate considerably from the equilibrium distribution.Comment: 8 pages, 13 figure
The hydrology of northern boreal lakes in the Taiga Shield and Plains, Northwest Territories and the importance of catchment characteristics in mediating responses to climate
Freshwater lakes are prominent features across northern boreal regions and are sensitive to changing climate conditions. This study, spanning the 2017-18 ice-free seasons, broadens our understanding of how variable climate and landscape conditions influence subarctic lake hydrology in the North Slave Region near Yellowknife, Northwest Territories (NT), Canada. We studied 20 lakes located within the Taiga Shield and Taiga Plains ecozones through an integrated approach, utilizing water isotope tracers (δ2H and δ18O), lake level changes, local meteorological conditions and remotely sensed catchment data. Lake water isotope data were obtained twice during the ice-free season (May and August) and evaporation/inflow (E/I) ratios were calculated to identify the relative importance of catchment hydrological controls. Hydrological data were compared to measured and modelled catchment characteristics, including relative lake/catchment size, slope, land cover and recent wildfire burn area. Overall, precipitation was a major driver of seasonal and interannual lake hydrological change, while evaporation was a major driver of summer water loss. Relative catchment size (lake area to catchment area (LA/CA)) was found to be an important driver of lake hydrology, however, this relationship is complicated by storage deficits associated with variable meteorological conditions. During wet conditions (e.g., freshet and periods of high rainfall), lakes with larger catchments (low LA/CA) had more positive water balances than lakes with high LA/CA. Under drier conditions, lake catchment size and associated fill-and-spill hydrological connectivity was reduced. Lake basins with high LA/CA (particularly those with shallower depth and greater surface area) were more prone to evaporative water loss. Lake hydrological conditions were less influenced by catchment land cover compositions, including burn area. Findings presented here highlight important drivers of lake water balances in subarctic boreal regions, which are sensitive to ongoing changes in climate. This study is part of a broader research project funded and supported by NWT Cumulative Impact Monitoring Program (CIMP), which is using a multi-proxy, paleo-ecological approach to determine long-term (i.e., 2,000 years) records of hydrology, drought, fire and water quality to inform future policy planning
How the geometry makes the criticality in two - component spreading phenomena?
We study numerically a two-component A-B spreading model (SMK model) for
concave and convex radial growth of 2d-geometries. The seed is chosen to be an
occupied circle line, and growth spreads inside the circle (concave geometry)
or outside the circle (convex geometry). On the basis of generalised
diffusion-annihilation equation for domain evolution, we derive the mean field
relations describing quite well the results of numerical investigations. We
conclude that the intrinsic universality of the SMK does not depend on the
geometry and the dependence of criticality versus the curvature observed in
numerical experiments is only an apparent effect. We discuss the dependence of
the apparent critical exponent upon the spreading geometry and
initial conditions.Comment: Uses iopart.cls, 11 pages with 8 postscript figures embedde
Aspherical gravitational monopoles
We show how to construct non-spherically-symmetric extended bodies of uniform
density behaving exactly as pointlike masses. These ``gravitational monopoles''
have the following equivalent properties: (i) they generate, outside them, a
spherically-symmetric gravitational potential ; (ii) their
interaction energy with an external gravitational potential is ; and (iii) all their multipole moments (of order ) with
respect to their center of mass vanish identically. The method applies for
any number of space dimensions. The free parameters entering the construction
are: (1) an arbitrary surface bounding a connected open subset
of ; (2) the arbitrary choice of the center of mass within
; and (3) the total volume of the body. An extension of the method
allows one to construct homogeneous bodies which are gravitationally equivalent
(in the sense of having exactly the same multipole moments) to any given body.Comment: 55 pages, Latex , submitted to Nucl.Phys.
Early stages of ramified growth in quasi-two-dimensional electrochemical deposition
I have measured the early stages of the growth of branched metal aggregates
formed by electrochemical deposition in very thin layers. The growth rate of
spatial Fourier modes is described qualitatively by the results of a linear
stability analysis [D.P. Barkey, R.H. Muller, and C.W. Tobias, J. Electrochem.
Soc. {\bf 136}, 2207 (1989)]. The maximum growth rate is proportional to
where is the current through the electrochemical cell,
the electrolyte concentration, and . Differences
between my results and the theoretical predictions suggest that
electroconvection in the electrolyte has a large influence on the instability
leading to ramified growth.Comment: REVTeX, four ps figure
Exact results for nucleation-and-growth in one dimension
We study statistical properties of the Kolmogorov-Avrami-Johnson-Mehl
nucleation-and-growth model in one dimension. We obtain exact results for the
gap density as well as the island distribution. When all nucleation events
occur simultaneously, the island distribution has discontinuous derivatives on
the rays x_n(t)=nt, n=1,2,3... We introduce an accelerated growth mechanism
where the velocity increases linearly with the island size. We solve for the
inter-island gap density and show that the system reaches complete coverage in
a finite time and that the near-critical behavior of the system is robust,
i.e., it is insensitive to details such as the nucleation mechanism.Comment: 9 pages, revtex, also available from http://arnold.uchicago.edu/~ebn
Structure formation in active networks
Structure formation and constant reorganization of the actin cytoskeleton are
key requirements for the function of living cells. Here we show that a minimal
reconstituted system consisting of actin filaments, crosslinking molecules and
molecular-motor filaments exhibits a generic mechanism of structure formation,
characterized by a broad distribution of cluster sizes. We demonstrate that the
growth of the structures depends on the intricate balance between
crosslinker-induced stabilization and simultaneous destabilization by molecular
motors, a mechanism analogous to nucleation and growth in passive systems. We
also show that the intricate interplay between force generation, coarsening and
connectivity is responsible for the highly dynamic process of structure
formation in this heterogeneous active gel, and that these competing mechanisms
result in anomalous transport, reminiscent of intracellular dynamics
Eulerian and Lagrangian properties of biophyscial intermittency in the ocean
2000 FLORIDA AVE NW, WASHINGTON, USA, DC,
2000
