90 research outputs found
Understanding the gravitational and magnetic environment of a very long baseline atom interferometer
By utilizing the quadratic dependency of the interferometry phase on time,
the Hannover Very Long Baseline Atom Interferometer facility (VLBAI) aims for
sub nm/s gravity measurement sensitivity. With its 10 m vertical baseline,
VLBAI offers promising prospects in testing fundamental physics at the
interface between quantum mechanics and general relativity. Here we discuss the
challenges imposed on controlling VLBAI's magnetic and gravitational
environment and report on their effect on the device's accuracy. Within the
inner 8 m of the magnetic shield, residual magnetic field gradients expect to
cause a bias acceleration of only 610 m/s while we evaluate
the bias shift due to the facility's non-linear gravity gradient to 2.6
nm/s. The model allows the VLBAI facility to be a reference to other mobile
devices for calibration purposes with an uncertainty below the 10 nm/s
level.Comment: Presented at the Ninth Meeting on CPT and Lorentz Symmetry,
Bloomington, Indiana, May 17-26, 202
Stochastic Modeling of Intrusion-Tolerant Server Architectures for Dependability and Performance Evaluation
Coordinated Science Laboratory was formerly known as Control Systems LaboratoryDARPA / F30602-00-C-017
JARVIS-Leaderboard: a large scale benchmark of materials design methods
Lack of rigorous reproducibility and validation are significant hurdles for scientific development across many fields. Materials science, in particular, encompasses a variety of experimental and theoretical approaches that require careful benchmarking. Leaderboard efforts have been developed previously to mitigate these issues. However, a comprehensive comparison and benchmarking on an integrated platform with multiple data modalities with perfect and defect materials data is still lacking. This work introduces JARVIS-Leaderboard, an open-source and community-driven platform that facilitates benchmarking and enhances reproducibility. The platform allows users to set up benchmarks with custom tasks and enables contributions in the form of dataset, code, and meta-data submissions. We cover the following materials design categories: Artificial Intelligence (AI), Electronic Structure (ES), Force-fields (FF), Quantum Computation (QC), and Experiments (EXP). For AI, we cover several types of input data, including atomic structures, atomistic images, spectra, and text. For ES, we consider multiple ES approaches, software packages, pseudopotentials, materials, and properties, comparing results to experiment. For FF, we compare multiple approaches for material property predictions. For QC, we benchmark Hamiltonian simulations using various quantum algorithms and circuits. Finally, for experiments, we use the inter-laboratory approach to establish benchmarks. There are 1281 contributions to 274 benchmarks using 152 methods with more than 8 million data points, and the leaderboard is continuously expanding. The JARVIS-Leaderboard is available at the website: https://pages.nist.gov/jarvis_leaderboard
Large Scale Benchmark of Materials Design Methods
Lack of rigorous reproducibility and validation are major hurdles for
scientific development across many fields. Materials science in particular
encompasses a variety of experimental and theoretical approaches that require
careful benchmarking. Leaderboard efforts have been developed previously to
mitigate these issues. However, a comprehensive comparison and benchmarking on
an integrated platform with multiple data modalities with both perfect and
defect materials data is still lacking. This work introduces
JARVIS-Leaderboard, an open-source and community-driven platform that
facilitates benchmarking and enhances reproducibility. The platform allows
users to set up benchmarks with custom tasks and enables contributions in the
form of dataset, code, and meta-data submissions. We cover the following
materials design categories: Artificial Intelligence (AI), Electronic Structure
(ES), Force-fields (FF), Quantum Computation (QC) and Experiments (EXP). For
AI, we cover several types of input data, including atomic structures,
atomistic images, spectra, and text. For ES, we consider multiple ES
approaches, software packages, pseudopotentials, materials, and properties,
comparing results to experiment. For FF, we compare multiple approaches for
material property predictions. For QC, we benchmark Hamiltonian simulations
using various quantum algorithms and circuits. Finally, for experiments, we use
the inter-laboratory approach to establish benchmarks. There are 1281
contributions to 274 benchmarks using 152 methods with more than 8 million
data-points, and the leaderboard is continuously expanding. The
JARVIS-Leaderboard is available at the website:
https://pages.nist.gov/jarvis_leaderboar
Terrestrial Very-Long-Baseline Atom Interferometry : summary of the second workshop
This summary of the second Terrestrial Very-Long-Baseline Atom Interferometry (TVLBAI) Workshop provides a comprehensive overview of our meeting held in London in April 2024 (Second Terrestrial Very-Long-Baseline Atom Interferometry Workshop, Imperial College, April 2024), building on the initial discussions during the inaugural workshop held at CERN in March 2023 (First Terrestrial Very-Long-Baseline Atom Interferometry Workshop, CERN, March 2023). Like the summary of the first workshop (Abend et al. in AVS Quantum Sci. 6:024701, 2024), this document records a critical milestone for the international atom interferometry community. It documents our concerted efforts to evaluate progress, address emerging challenges, and refine strategic directions for future large-scale atom interferometry projects. Our commitment to collaboration is manifested by the integration of diverse expertise and the coordination of international resources, all aimed at advancing the frontiers of atom interferometry physics and technology, as set out in a Memorandum of Understanding signed by over 50 institutions (Memorandum of Understanding for the Terrestrial Very Long Baseline Atom Interferometer Study)
Intrusion-Tolerant State Transfer for Group Communication Systems
Coordinated Science Laboratory was formerly known as Control Systems LaboratoryDARPA / F30602-00-C-0172U of I OnlyRestricted to UIUC communit
- …
