3,718 research outputs found
An explicitly solvable model of the spontaneous PT-symmetry breaking
We contemplate the pair of the purely imaginary delta-function potentials on
a finite interval with Dirichlet boundary conditions. The two parameter model
exhibits nicely the expected quantitative features of the unavoided level
crossing and of a "phase-transition" complexification of the energies.
Combining analytic and numerical techniques we investigate strength- and
position-dependence of its spectrum.Comment: presented in the int. conference "Pseudo-Hermitian Hamiltonians in
Quantum Physics III" (Instanbul, Koc University, June 20 - 22, 2005).
accepted in Czechoslovak J. Phy
Magnonic Charge Pumping via Spin-Orbit Coupling
The interplay between spin, charge, and orbital degrees of freedom has led to
the development of spintronic devices like spin-torque oscillators, spin-logic
devices, and spin-transfer torque magnetic random-access memories. In this
development spin pumping, the process where pure spin-currents are generated
from magnetisation precession, has proved to be a powerful method for probing
spin physics and magnetisation dynamics. The effect originates from direct
conversion of low energy quantised spin-waves in the magnet, known as magnons,
into a flow of spins from the precessing magnet to adjacent normal metal leads.
The spin-pumping phenomenon represents a convenient way to electrically detect
magnetisation dynamics, however, precessing magnets have been limited so far to
pump pure spin currents, which require a secondary spin-charge conversion
element such as heavy metals with large spin Hall angle or multi-layer layouts
to be detectable. Here, we report the experimental observation of charge
pumping in which a precessing ferromagnet pumps a charge current, demonstrating
direct conversion of magnons into high-frequency currents via the relativistic
spin-orbit interaction. The generated electric current, differently from spin
currents generated by spin-pumping, can be directly detected without the need
of any additional spin to charge conversion mechanism and amplitude and phase
information about the relativistic current-driven magnetisation dynamics. The
charge-pumping phenomenon is generic and gives a deeper understanding of the
recently observed spin-orbit torques, of which it is the reciprocal effect and
which currently attract interest for their potential in manipulating magnetic
information. Furthermore, charge pumping provides a novel link between
magnetism and electricity and may find application in sourcing alternating
electric currents.Comment: 3 figure
Guidebook for the Development of a Nationally Appropriate Mitigation Action on Efficient Lighting
Study of the B +→ J / ψ Λ ¯ p decay in proton-proton collisions at √s = 8 TeV
A study of the B +→ J / ψ Λ ¯ p decay using proton-proton collision data collected at s = 8 TeV by the CMS experiment at the LHC, corresponding to an integrated luminosity of 19.6 fb−1, is presented. The ratio of branching fractions B(B+→J/ψΛ¯p)/B(B+→J/ψK∗(892)+) is measured to be (1.054 ± 0.057(stat) ± 0.035(syst) ± 0.011(B))%, where the last uncertainty reflects the uncertainties in the world-average branching fractions of Λ ¯ and K*(892) + decays to reconstructed final states. The invariant mass distributions of the J / ψ Λ ¯ , J/ψp, and Λ ¯ p systems produced in the B +→ J / ψ Λ¯ p decay are investigated and found to be inconsistent with the pure phase space hypothesis. The analysis is extended by using a model-independent angular amplitude analysis, which shows that the observed invariant mass distributions are consistent with the contributions from excited kaons decaying to the Λ ¯ p system. [Figure not available: see fulltext.
Search for a heavy Higgs boson decaying to a pair of W bosons in proton-proton collisions at √s = 13 TeV
A search for a heavy Higgs boson in the mass range from 0.2 to 3.0 TeV, decaying to a pair of W bosons, is presented. The analysis is based on proton-proton collisions at s = 13 TeV recorded by the CMS experiment at the LHC in 2016, corresponding to an integrated luminosity of 35.9 fb−1. The W boson pair decays are reconstructed in the 2ℓ2ν and ℓν2q final states (with ℓ = e or μ). Both gluon fusion and vector boson fusion production of the signal are considered. Interference effects between the signal and background are also taken into account. The observed data are consistent with the standard model (SM) expectation. Combined upper limits at 95% confidence level on the product of the cross section and branching fraction exclude a heavy Higgs boson with SM-like couplings and decays up to 1870 GeV. Exclusion limits are also set in the context of a number of two-Higgs-doublet model formulations, further reducing the allowed parameter space for SM extensions. [Figure not available: see fulltext.
- …
