1,085 research outputs found
Fr-TM-align: a new protein structural alignment method based on fragment alignments and the TM-score
©2008 Pandit and Skolnick; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. This article is available from: http://www.biomedcentral.com/1471-2105/9/531doi:10.1186/1471-2105-9-531Background: Protein tertiary structure comparisons are employed in various fields of
contemporary structural biology. Most structure comparison methods involve generation of an
initial seed alignment, which is extended and/or refined to provide the best structural superposition
between a pair of protein structures as assessed by a structure comparison metric. One such
metric, the TM-score, was recently introduced to provide a combined structure quality measure
of the coordinate root mean square deviation between a pair of structures and coverage. Using the
TM-score, the TM-align structure alignment algorithm was developed that was often found to have
better accuracy and coverage than the most commonly used structural alignment programs;
however, there were a number of situations when this was not true.
Results: To further improve structure alignment quality, the Fr-TM-align algorithm has been
developed where aligned fragment pairs are used to generate the initial seed alignments that are
then refined using dynamic programming to maximize the TM-score. For the assessment of the
structural alignment quality from Fr-TM-align in comparison to other programs such as CE and TMalign,
we examined various alignment quality assessment scores such as PSI and TM-score. The
assessment showed that the structural alignment quality from Fr-TM-align is better in comparison
to both CE and TM-align. On average, the structural alignments generated using Fr-TM-align have
a higher TM-score (~9%) and coverage (~7%) in comparison to those generated by TM-align. Fr-
TM-align uses an exhaustive procedure to generate initial seed alignments. Hence, the algorithm is
computationally more expensive than TM-align.
Conclusion: Fr-TM-align, a new algorithm that employs fragment alignment and assembly provides
better structural alignments in comparison to TM-align. The source code and executables of Fr-
TM-align are freely downloadable at: http://cssb.biology.gatech.edu/skolnick/files/FrTMalign/
Quark helicity distributions in the nucleon for up, down, and strange quarks from semi--inclusive deep--inelastic scattering
Polarized deep--inelastic scattering data on longitudinally polarized
hydrogen and deuterium targets have been used to determine double spin
asymmetries of cross sections. Inclusive and semi--inclusive asymmetries for
the production of positive and negative pions from hydrogen were obtained in a
re--analysis of previously published data. Inclusive and semi--inclusive
asymmetries for the production of negative and positive pions and kaons were
measured on a polarized deuterium target. The separate helicity densities for
the up and down quarks and the anti--up, anti--down, and strange sea quarks
were computed from these asymmetries in a ``leading order'' QCD analysis. The
polarization of the up--quark is positive and that of the down--quark is
negative. All extracted sea quark polarizations are consistent with zero, and
the light quark sea helicity densities are flavor symmetric within the
experimental uncertainties. First and second moments of the extracted quark
helicity densities in the measured range are consistent with fits of inclusive
data
The stellar and sub-stellar IMF of simple and composite populations
The current knowledge on the stellar IMF is documented. It appears to become
top-heavy when the star-formation rate density surpasses about 0.1Msun/(yr
pc^3) on a pc scale and it may become increasingly bottom-heavy with increasing
metallicity and in increasingly massive early-type galaxies. It declines quite
steeply below about 0.07Msun with brown dwarfs (BDs) and very low mass stars
having their own IMF. The most massive star of mass mmax formed in an embedded
cluster with stellar mass Mecl correlates strongly with Mecl being a result of
gravitation-driven but resource-limited growth and fragmentation induced
starvation. There is no convincing evidence whatsoever that massive stars do
form in isolation. Various methods of discretising a stellar population are
introduced: optimal sampling leads to a mass distribution that perfectly
represents the exact form of the desired IMF and the mmax-to-Mecl relation,
while random sampling results in statistical variations of the shape of the
IMF. The observed mmax-to-Mecl correlation and the small spread of IMF
power-law indices together suggest that optimally sampling the IMF may be the
more realistic description of star formation than random sampling from a
universal IMF with a constant upper mass limit. Composite populations on galaxy
scales, which are formed from many pc scale star formation events, need to be
described by the integrated galactic IMF. This IGIMF varies systematically from
top-light to top-heavy in dependence of galaxy type and star formation rate,
with dramatic implications for theories of galaxy formation and evolution.Comment: 167 pages, 37 figures, 3 tables, published in Stellar Systems and
Galactic Structure, Vol.5, Springer. This revised version is consistent with
the published version and includes additional references and minor additions
to the text as well as a recomputed Table 1. ISBN 978-90-481-8817-
Retrospective harm benefit analysis of pre-clinical animal research for six treatment interventions
The harm benefit analysis (HBA) is the cornerstone of animal research regulation and is considered to be a key ethical safeguard for animals. The HBA involves weighing the anticipated benefits of animal research against its predicted harms to animals but there are doubts about how objective and accountable this process is.i. To explore the harms to animals involved in pre-clinical animal studies and to assess these against the benefits for humans accruing from these studies; ii. To test the feasibility of conducting this type of retrospective HBA.Data on harms were systematically extracted from a sample of pre-clinical animal studies whose clinical relevance had already been investigated by comparing systematic reviews of the animal studies with systematic reviews of human studies for the same interventions (antifibrinolytics for haemorrhage, bisphosphonates for osteoporosis, corticosteroids for brain injury, Tirilazad for stroke, antenatal corticosteroids for neonatal respiratory distress and thrombolytics for stroke). Clinical relevance was also explored in terms of current clinical practice. Harms were categorised for severity using an expert panel. The quality of the research and its impact were considered. Bateson's Cube was used to conduct the HBA.The most common assessment of animal harms by the expert panel was 'severe'. Reported use of analgesia was rare and some animals (including most neonates) endured significant procedures with no, or only light, anaesthesia reported. Some animals suffered iatrogenic harms. Many were kept alive for long periods post-experimentally but only 1% of studies reported post-operative care. A third of studies reported that some animals died prior to endpoints. All the studies were of poor quality. Having weighed the actual harms to animals against the actual clinical benefits accruing from these studies, and taking into account the quality of the research and its impact, less than 7% of the studies were permissible according to Bateson's Cube: only the moderate bisphosphonate studies appeared to minimise harms to animals whilst being associated with benefit for humans.This is the first time the accountability of the HBA has been systematically explored across a range of pre-clinical animal studies. The regulatory systems in place when these studies were conducted failed to safeguard animals from severe suffering or to ensure that only beneficial, scientifically rigorous research was conducted. Our findings indicate a pressing need to: i. review regulations, particularly those that permit animals to suffer severe harms; ii. reform the processes of prospectively assessing pre-clinical animal studies to make them fit for purpose; and iii. systematically evaluate the benefits of pre-clinical animal research to permit a more realistic assessment of its likely future benefits
Estimating fine-root production by tree species and understorey functional groups in two contrasting peatland forests
Background and aims Estimation of root-mediated carbon fluxes in forested peatlands is needed for understanding ecosystem functioning and supporting greenhouse gas inventories. Here, we aim to determine the optimal methodology for utilizing ingrowth cores in estimating annual fine-root production (FRP) and its vertical distribution in trees, shrubs and herbs. Methods We used 3-year data obtained with modified ingrowth core method and tested two calculation methods: 'ingrowth-dividing' and `ingrowth-subtracting'. Results The ingrowth-dividing method combined with a 2-year incubation of ingrowth cores can be used for the 'best estimate' of FRP. The FRP in the nutrient-rich fen forest (561 g m(-2)) was more than twice that in the nutrient-poor bog forest (244 g m(-2)). Most FRP occurred in the top 20-cm layer (76-82 %). Tree FRP accounted for 71 % of total FRP in the bog and 94 % in the fen forests, respectively, following the aboveground vegetation patterns; however, in fen forest the proportions of spruce and birch in FRP were higher than their proportions in stand basal area. Conclusions Our methodology may be used to study peatland FRP patterns more widely and will reduce the volume of labour-intensive work, but will benefit from verification with other methods, as is the case in all in situ FRP studies.Peer reviewe
Polarised Quark Distributions in the Nucleon from Semi-Inclusive Spin Asymmetries
We present a measurement of semi-inclusive spin asymmetries for positively
and negatively charged hadrons from deep inelastic scattering of polarised
muons on polarised protons and deuterons in the range 1
GeV. Compared to our previous publication on this subject, with the new
data the statistical errors have been reduced by nearly a factor of two.
From these asymmetries and our inclusive spin asymmetries we determine the
polarised quark distributions of valence quarks and non-strange sea quarks at
=10 GeV. The polarised valence quark distribution, , is positive and the polarisation increases with . The polarised
valence quark distribution, , is negative and the non-strange
sea distribution, , is consistent with zero over the measured
range of . We find for the first moments , and
, where we assumed
. We also determine for the first time the
second moments of the valence distributions .Comment: 17 page
PUF60 variants cause a syndrome of ID, short stature, microcephaly, coloboma, craniofacial, cardiac, renal and spinal features.
PUF60 encodes a nucleic acid-binding protein, a component of multimeric complexes regulating RNA splicing and transcription. In 2013, patients with microdeletions of chromosome 8q24.3 including PUF60 were found to have developmental delay, microcephaly, craniofacial, renal and cardiac defects. Very similar phenotypes have been described in six patients with variants in PUF60, suggesting that it underlies the syndrome. We report 12 additional patients with PUF60 variants who were ascertained using exome sequencing: six through the Deciphering Developmental Disorders Study and six through similar projects. Detailed phenotypic analysis of all patients was undertaken. All 12 patients had de novo heterozygous PUF60 variants on exome analysis, each confirmed by Sanger sequencing: four frameshift variants resulting in premature stop codons, three missense variants that clustered within the RNA recognition motif of PUF60 and five essential splice-site (ESS) variant. Analysis of cDNA from a fibroblast cell line derived from one of the patients with an ESS variants revealed aberrant splicing. The consistent feature was developmental delay and most patients had short stature. The phenotypic variability was striking; however, we observed similarities including spinal segmentation anomalies, congenital heart disease, ocular colobomata, hand anomalies and (in two patients) unilateral renal agenesis/horseshoe kidney. Characteristic facial features included micrognathia, a thin upper lip and long philtrum, narrow almond-shaped palpebral fissures, synophrys, flared eyebrows and facial hypertrichosis. Heterozygote loss-of-function variants in PUF60 cause a phenotype comprising growth/developmental delay and craniofacial, cardiac, renal, ocular and spinal anomalies, adding to disorders of human development resulting from aberrant RNA processing/spliceosomal function
Sources of variation in cuticular hydrocarbons in the ant formica exsecta
Phenotypic variation arises from interactions between genotype and environment, although how variation is produced and then maintained remains unclear. The discovery of the nest-mate recognition system in Formica exsecta ants has allowed phenotypic variation in chemical profiles to be quantified across a natural population of 83 colonies. We investigated if this variation was correlated or not with intrinsic (genetic relatedness), extrinsic (location, light, temperature) or social (queen number) factors. (Z)-9-Alkenes and n-alkanes showed different patterns of variance: island (location) explained only 0.2% of the variation in (Z)-9-alkenes, but 21¬–29% in n-alkanes, whereas colony of origin explained 96% and 45–49% of the variation in (Z)-9-alkenes and n-alkanes, respectively. By contrast, within-colony variance of (Z)-9-alkenes was 4%, and 23–34% in n-alkanes, supporting the function of the former as recognition cues. (Z)-9-Alkene and n-alkane profiles were correlated with the genetic distance between colonies. Only n-alkane profiles diverged with increasing spatial distance. Sampling year explained a small (5%), but significant, amount of the variation in the (Z)-9-alkenes, but there was no consistent directional trend. Polygynous colonies and populous monogynous colonies were dominated by a rich C23:1 profile. We found no associations between worker size, mound exposure, or humidity, although effect sizes for the latter two factors were considerable. The results support the conjecture that genetic factors are the most likely source of between-colony variation in cuticular hydrocarbons
Neural correlates of evidence accumulation during value-based decisions revealed via simultaneous EEG-fMRI
Current computational accounts posit that, in simple binary choices, humans accumulate
evidence in favour of the different alternatives before committing to a decision. Neural
correlates of this accumulating activity have been found during perceptual decisions in
parietal and prefrontal cortex; however the source of such activity in value-based choices
remains unknown. Here we use simultaneous EEG–fMRI and computational modelling to
identify EEG signals reflecting an accumulation process and demonstrate that the within- and
across-trial variability in these signals explains fMRI responses in posterior-medial frontal
cortex. Consistent with its role in integrating the evidence prior to reaching a decision, this
region also exhibits task-dependent coupling with the ventromedial prefrontal cortex and
the striatum, brain areas known to encode the subjective value of the decision alternatives.
These results further endorse the proposition of an evidence accumulation process
during value-based decisions in humans and implicate the posterior-medial frontal cortex in
this process
Recommended from our members
Fine-root turnover rates of European forests revisited: an analysis of data from sequential coring and ingrowth cores
Background and Aims
Forest trees directly contribute to carbon cycling in forest soils through the turnover of their fine roots. In this study we aimed to calculate root turnover rates of common European forest tree species and to compare them with most frequently published values.
Methods
We compiled available European data and applied various turnover rate calculation methods to the resulting database. We used Decision Matrix and Maximum-Minimum formula as suggested in the literature.
Results
Mean turnover rates obtained by the combination of sequential coring and Decision Matrix were 0.86 yr−1 for Fagus sylvatica and 0.88 yr−1 for Picea abies when maximum biomass data were used for the calculation, and 1.11 yr−1 for both species when mean biomass data were used. Using mean biomass rather than maximum resulted in about 30 % higher values of root turnover. Using the Decision Matrix to calculate turnover rate doubled the rates when compared to the Maximum-Minimum formula. The Decision Matrix, however, makes use of more input information than the Maximum-Minimum formula.
Conclusions
We propose that calculations using the Decision Matrix with mean biomass give the most reliable estimates of root turnover rates in European forests and should preferentially be used in models and C reporting
- …
