23 research outputs found
Rapid engineering of polyketide overproduction by gene transfer to industrially optimized strains
Approaches to stabilization of inter-domain recombination in polyketide synthase gene expression plasmids
Knocking out of tailoring genes eryK and eryG in an industrial erythromycin-producing strain of Saccharopolyspora erythraea leading to overproduction of erythromycin B, C and D at different conversion ratios
Expanding pyrimidine diphosphosugar libraries via structure-based nucleotidylyltransferase engineering
In vitro “glycorandomization” is a chemoenzymatic approach for generating diverse libraries of glycosylated biomolecules based on natural product scaffolds. This technology makes use of engineered variants of specific enzymes affecting metabolite glycosylation, particularly nucleotidylyltransferases and glycosyltransferases. To expand the repertoire of UDP/dTDP sugars readily available for glycorandomization, we now report a structure-based engineering approach to increase the diversity of α-d-hexopyranosyl phosphates accepted by Salmonella enterica LT2 α-d-glucopyranosyl phosphate thymidylyltransferase (E(p)). This article highlights the design rationale, determined substrate specificity, and structural elucidation of three “designed” mutations, illustrating both the success and unexpected outcomes from this type of approach. In addition, a single amino acid substitution in the substrate-binding pocket (L89T) was found to significantly increase the set of α-d-hexopyranosyl phosphates accepted by E(p) to include α-d-allo-, α-d-altro-, and α-d-talopyranosyl phosphate. In aggregate, our results provide valuable blueprints for altering nucleotidylyltransferase specificity by design, which is the first step toward in vitro glycorandomization
