817 research outputs found
The vertebrate makorin ubiquitin ligase gene family has been shaped by large-scale duplication and retroposition from an ancestral gonad-specific, maternal-effect gene
Background Members of the makorin (mkrn) gene family encode RING/C3H zinc finger proteins with U3 ubiquitin ligase activity. Although these proteins have been described in a variety of eukaryotes such as plants, fungi, invertebrates and vertebrates including human, almost nothing is known about their structural and functional evolution. Results Via partial sequencing of a testis cDNA library from the poeciliid fish Xiphophorus maculatus, we have identified a new member of the makorin gene family, that we called mkrn4. In addition to the already described mkrn1 and mkrn2, mkrn4 is the third example of a makorin gene present in both tetrapods and ray-finned fish. However, this gene was not detected in mouse and rat, suggesting its loss in the lineage leading to rodent murids. Mkrn2 and mkrn4 are located in large ancient duplicated regions in tetrapod and fish genomes, suggesting the possible involvement of ancestral vertebrate-specific genome duplication in the formation of these genes. Intriguingly, many mkrn1 and mkrn2 intronless retrocopies have been detected in mammals but not in other vertebrates, most of them corresponding to pseudogenes. The nature and number of zinc fingers were found to be conserved in Mkrn1 and Mkrn2 but much more variable in Mkrn4, with lineage-specific differences. RT-qPCR analysis demonstrated a highly gonad-biased expression pattern for makorin genes in medaka and zebrafish (ray-finned fishes) and amphibians, but a strong relaxation of this specificity in birds and mammals. All three mkrn genes were maternally expressed before zygotic genome activation in both medaka and zebrafish early embryos. Conclusion Our analysis demonstrates that the makorin gene family has evolved through large-scale duplication and subsequent lineage-specific retroposition-mediated duplications in vertebrates. From the three major vertebrate mkrn genes, mkrn4 shows the highest evolutionary dynamics, with lineage-specific loss of zinc fingers and even complete gene elimination from certain groups of vertebrates. Comparative expression analysis strongly suggests that the ancestral E3 ubiquitin ligase function of the single copy mkrn gene before duplication in vertebrates was gonad-specific, with maternal expression in early embryos. (Résumé d'auteur
X. couchianus and X. hellerii genome models provide genomic variation insight among Xiphophorus species
4 inter-chromosomal rearrangement events between X. hellerii and X. maculatus. (XLSX 40 kb
Chromosomal-level assembly of the Asian Seabass genome using long sequence reads and multi-layered scaffolding
We report here the ~670 Mb genome assembly of the Asian seabass (Lates calcarifer), a tropical marine teleost. We used long-read sequencing augmented by transcriptomics, optical and genetic mapping along with shared synteny from closely related fish species to derive a chromosome-level assembly with a contig N50 size over 1 Mb and scaffold N50 size over 25 Mb that span ~90% of the genome. The population structure of L. calcarifer species complex was analyzed by re-sequencing 61 individuals representing various regions across the species' native range. SNP analyses identified high levels of genetic diversity and confirmed earlier indications of a population stratification comprising three clades with signs of admixture apparent in the South-East Asian population. The quality of the Asian seabass genome assembly far exceeds that of any other fish species, and will serve as a new standard for fish genomics
Genetic Analysis of the Role of Proteolysis in the Activation of Latent Myostatin
Myostatin is a secreted protein that normally acts to limit skeletal muscle growth. As a result, there is considerable interest in developing agents capable of blocking myostatin activity, as such agents could have widespread applications for the treatment of muscle degenerative and wasting conditions. Myostatin normally exists in an inactive state in which the mature C-terminal portion of the molecule is bound non-covalently to its N-terminal propeptide. We previously showed that this latent complex can be activated in vitro by cleavage of the propeptide with members of the bone morphogenetic protein-1/tolloid (BMP-1/TLD) family of metalloproteases. Here, I show that mice engineered to carry a germline point mutation rendering the propeptide protease-resistant exhibit increases in muscle mass approaching those seen in mice completely lacking myostatin. Mice homozygous for the point mutation have increased muscling even though their circulating levels of myostatin protein are dramatically increased, consistent with an inability of myostatin to be activated from its latent state. Furthermore, I show that a loss-of-function mutation in Tll2, which encodes one member of this protease family, has a small, but significant, effect on muscle mass, implying that its function is likely redundant with those of other family members. These findings provide genetic support for the hypothesis that proteolytic cleavage of the propeptide by BMP-1/TLD proteases plays a critical role in the activation of latent myostatin in vivo and suggest that targeting the activities of these proteases may be an effective therapeutic strategy for enhancing muscle growth in clinical settings of muscle loss and degeneration
Identification of genes differentially expressed in dorsal and ventral chick midbrain during early Development
Background: During the development of the central nervous system (CNS), patterning processes along the dorsoventral ( DV) axis of the neural tube generate different neuronal subtypes. As development progresses these neurons are arranged into functional units with varying cytoarchitecture, such as laminae or nuclei for efficient relaying of information. Early in development ventral and dorsal regions are similar in size and structure. Different proliferation rates and cell migration patterns are likely to result in the formation of laminae or nuclei, eventually. However, the underlying molecular mechanisms that establish these different structural arrangements are not well understood. We undertook a differential display polymerase chain reaction (DD-PCR) screen to identify genes with distinct expression patterns between dorsal and ventral regions of the chick midbrain in order to identify genes which regulate the sculpturing of such divergent neuronal organisation. We focused on the DV axis of the early chick midbrain since mesencephalic alar plate and basal plate develop into laminae and nuclei, respectively. Results: We identified 53 differentially expressed bands in our initial screen. Twenty-six of these could be assigned to specific genes and we could unambiguously show the differential expression of five of the isolated cDNAs in vivo by in situ mRNA expression analysis. Additionally, we verified differential levels of expression of a selected number of genes by using reverse transcriptase (RT) PCR method with gene-specific primers. One of these genes, QR1, has been previously cloned and we present here a detailed study of its early developmental time course and pattern of expression providing some insights into its possible function. Our phylogenetic analysis of QR1 shows that it is the chick orthologue of Sparc-like 1/Hevin/Mast9 gene in mice, rats, dogs and humans, a protein involved in cell adhesion. Conclusion: This study reveals some possible networks, which might be involved in directing the difference in neuronal specification and cytoarchitecture observed in the brain
Dmrt1 polymorphism covaries with sex-determination patterns in Rana temporaria.
Patterns of sex-chromosome differentiation and gonadal development have been shown to vary among populations of Rana temporaria along a latitudinal transect in Sweden. Frogs from the northern-boreal population of Ammarnäs displayed well-differentiated X and Y haplotypes, early gonadal differentiation, and a perfect match between phenotypic and genotypic sex. In contrast, no differentiated Y haplotypes could be detected in the southern population of Tvedöra, where juveniles furthermore showed delayed gonadal differentiation. Here, we show that Dmrt1, a gene that plays a key role in sex determination and sexual development across all metazoans, displays significant sex differentiation in Tvedöra, with a Y-specific haplotype distinct from Ammarnäs. The differential segment is not only much shorter in Tvedöra than in Ammarnäs, it is also less differentiated and associates with both delayed gonadal differentiation and imperfect match between phenotypic and genotypic sex. Whereas Tvedöra juveniles with a local Y haplotype tend to ultimately develop as males, those without it may nevertheless become functional XX males, but with strongly female-biased progeny. Our findings suggest that the variance in patterns of sex determination documented in common frogs might result from a genetic polymorphism within a small genomic region that contains Dmrt1. They also substantiate the view that recurrent convergences of sex determination toward a limited set of chromosome pairs may result from the co-option of small genomic regions that harbor key genes from the sex-determination pathway
Insights from Amphioxus into the Evolution of Vertebrate Cartilage
Central to the story of vertebrate evolution is the origin of the vertebrate head, a problem difficult to approach using paleontology and comparative morphology due to a lack of unambiguous intermediate forms. Embryologically, much of the vertebrate head is derived from two ectodermal tissues, the neural crest and cranial placodes. Recent work in protochordates suggests the first chordates possessed migratory neural tube cells with some features of neural crest cells. However, it is unclear how and when these cells acquired the ability to form cellular cartilage, a cell type unique to vertebrates. It has been variously proposed that the neural crest acquired chondrogenic ability by recruiting proto-chondrogenic gene programs deployed in the neural tube, pharynx, and notochord. To test these hypotheses we examined the expression of 11 amphioxus orthologs of genes involved in neural crest chondrogenesis. Consistent with cellular cartilage as a vertebrate novelty, we find that no single amphioxus tissue co-expresses all or most of these genes. However, most are variously co-expressed in mesodermal derivatives. Our results suggest that neural crest-derived cartilage evolved by serial cooption of genes which functioned primitively in mesoderm
Brief exposure of embryos to steroids or aromatase inhibitor induces sex reversal in Nile tilapia (Oreochromis niloticus)
peer reviewedThis study aimed to develop sex reversal procedures targeting the embryonic period as tools to study the early steps of sex differentiation in Nile tilapia with XX, XY and YY sexual genotypes. XX eggs were exposed to masculinizing treatments with androgens (17α-methyltestosterone, 11-ketotestosterone) or aromatase inhibitor (Fadrozole), whereas XY and YY eggs were subjected to feminizing treatments with estrogen analog (17α-ethynylestradiol). All treatments consisted of a single or double 4-h immersion applied between 1 and 36 h post-fertilization (hpf). Concentrations of active substances were 1000 or 2000 µg l-1 in XX and XY, and 2000 or 6500 µg l-1 in YY. Masculinizing treatments of XX embryos achieved a maximal sex reversal rate of 10 % with an exposure at 24 hpf to 1000 µg l-1 of 11-ketotestosterone or to 2000 µg l-1 of Fadrozole. Feminization of XY embryos was more efficient and induced up to 91 % sex reversal with an exposure to 2000 µg l-1 of 17α-ethynylestradiol. Interestingly, similar treatments failed to reverse YY fish to females, suggesting either that a sex determinant linked to the Y chromosome prevents the female pathway when present in two copies, or that a gene present on the X chromosome is needed for the development of a female phenotype
Evolution of pigment synthesis pathways by gene and genome duplication in fish
<p>Abstract</p> <p>Background</p> <p>Coloration and color patterning belong to the most diverse phenotypic traits in animals. Particularly, teleost fishes possess more pigment cell types than any other group of vertebrates. As the result of an ancient fish-specific genome duplication (FSGD), teleost genomes might contain more copies of genes involved in pigment cell development than tetrapods. No systematic genomic inventory allowing to test this hypothesis has been drawn up so far for pigmentation genes in fish, and almost nothing is known about the evolution of these genes in different fish lineages.</p> <p>Results</p> <p>Using a comparative genomic approach including phylogenetic reconstructions and synteny analyses, we have studied two major pigment synthesis pathways in teleost fish, the melanin and the pteridine pathways, with respect to different types of gene duplication. Genes encoding three of the four enzymes involved in the synthesis of melanin from tyrosine have been retained as duplicates after the FSGD. In the pteridine pathway, two cases of duplicated genes originating from the FSGD as well as several lineage-specific gene duplications were observed. In both pathways, genes encoding the rate-limiting enzymes, tyrosinase and GTP-cyclohydrolase I (GchI), have additional paralogs in teleosts compared to tetrapods, which have been generated by different modes of duplication. We have also observed a previously unrecognized diversity of <it>gchI </it>genes in vertebrates. In addition, we have found evidence for divergent resolution of duplicated pigmentation genes, <it>i.e</it>., differential gene loss in divergent teleost lineages, particularly in the tyrosinase gene family.</p> <p>Conclusion</p> <p>Mainly due to the FSGD, teleost fishes apparently have a greater repertoire of pigment synthesis genes than any other vertebrate group. Our results support an important role of the FSGD and other types of duplication in the evolution of pigmentation in fish.</p
A violência contra as mulheres e o resultado das políticas públicas brasileiras de combate à violência
O presente trabalho tem como objeto de estudo o tema violência contra as mulheres e as políticas públicas adotadas para combater a violência. Ele busca identificar as razões pelas quais a violência contra a mulher se estabelece de forma continua no âmbito doméstico, através de um estudo do contexto histórico do machismo e do patriarcado que, apesar das transformações e conquistas através das lutas e o movimento feminista, ainda não se libertou totalmente da dominação masculina inseridos em nossa sociedade atual. Ainda, descreve as formas existentes de violência contra a mulher, as quais estão presentes na Lei Maria da Penha, assim, como demonstra os dados e indicadores destas no Brasil e no Rio Grande do Sul. Também busca avaliar os doze anos da Lei Maria da Penha e as medidas protetivas de urgência. O que se pretende com o presente trabalho é demonstrar que a violência doméstica contra a mulher ocorre diariamente e que é um problema social que precisa ser sanado (sic)
- …
