473 research outputs found

    Flow induced by a randomly vibrating boundary

    Full text link
    We study the flow induced by random vibration of a solid boundary in an otherwise quiescent fluid. The analysis is motivated by experiments conducted under the low level and random effective acceleration field that is typical of a microgravity environment. When the boundary is planar and is being vibrated along its own plane, the variance of the velocity field decays as a power law of distance away from the boundary. If a low frequency cut-off is introduced in the power spectrum of the boundary velocity, the variance decays exponentially for distances larger than a Stokes layer thickness based on the cut-off frequency. Vibration of a gently curved boundary results in steady streaming in the ensemble average of the tangential velocity. Its amplitude diverges logarithmically with distance away from the boundary, but asymptotes to a constant value instead if a low frequency cut-off is considered. This steady component of the velocity is shown to depend logarithmically on the cut-off frequency. Finally, we consider the case of a periodically modulated solid boundary that is being randomly vibrated. We find steady streaming in the ensemble average of the first order velocity, with flow extending up to a characteristic distance of the order of the boundary wavelength. The structure of the flow in the vicinity of the boundary depends strongly on the correlation time of the boundary velocity.Comment: 26 pages, 8 figures. Journal of Fluid Mechanics format (JFM.cls

    Swarming and swirling in self-propelled polar granular rods

    Full text link
    Using experiments with anisotropic vibrated rods and quasi-2D numerical simulations, we show that shape plays an important role in the collective dynamics of self-propelled (SP) particles. We demonstrate that SP rods exhibit local ordering, aggregation at the side walls, and clustering absent in round SP particles. Furthermore, we find that at sufficiently strong excitation SP rods engage in a persistent swirling motion in which the velocity is strongly correlated with particle orientation.Comment: 4 page
    corecore