19 research outputs found
Challenges in first-principles NPT molecular dynamics of soft porous crystals: A case study on MIL-53(Ga)
Soft porous crystals present a challenge to molecular dynamics simulations
with flexible size and shape of the simulation cell (i.e., in the NPT
ensemble), since their framework responds very sensitively to small external
stimuli. Hence, all interactions have to be described very accurately in order
to obtain correct equilibrium structures. Here, we report a methodological
study on the nanoporous metal-organic framework MIL-53(Ga), which undergoes a
large-amplitude transition between a narrow- and a large-pore phase upon a
change in temperature. Since this system has not been investigated by density
functional theory (DFT)-based NPT simulations so far, we carefully check the
convergence of the stress tensor with respect to computational parameters.
Furthermore, we demonstrate the importance of dispersion interactions and test
two different ways of incorporating them into the DFT framework. As a result,
we propose two computational schemes which describe accurately the narrow- and
the large-pore phase of the material, respectively. These schemes can be used
in future work on the delicate interplay between adsorption in the nanopores
and structural flexibility of the host material
Ergebnisse atomistischer Modellierung von Geomaterialien
The present thesis deals with two aspects which are related to the present
Earth's chemical and thermal heterogeneity: trace element partitioning and the
lattice thermal conductivity of the lower mantle. We use atomistic computer
simulations, first, to elucidate the microscopic mechanisms governing the
incorporation of trace elements into silicate melts and their partitioning
behavior in the presence of silicate melts. Second, the atomistic modeling
approach is employed to obtain the lattice thermal conductivity of lower-
mantle minerals at high pressures and temperatures. In chapter 1, the
structure of aluminosilicate melts and glasses with 76 mol% SiO2 and varying
amounts of Y and La is studied by means of ab-initio and classical molecular
dynamics (MD) simulations as well as x-ray and neutron diffraction
experiments. The following structural trends are found: the average
coordination numbers of Y and La decrease with increasing REE content, and so
does the average coordination number of Al. Furthermore, the distribution of
Al coordination numbers is shifted to lower values in La-bearing melts, as
compared to Y-bearing melts. These trends are rationalized in terms of cation
field strengths. The ab-initio MD simulations also show that the Al avoidance
rule is not valid for the studied REE-bearing aluminosilicate melts. Chapter 2
is devoted to the incorporation of Y as a trace element into calcium
aluminosilicate melts. The aim is to understand how the melt composition, in
particular the Ca content and the degree of melt polymerization, influences
the partitioning behavior of Y between minerals and melts or between different
melts. The local environment of Y in different melts is studied by means of
classical MD and EXAFS spectroscopy. Using thermodynamic integration, we
determine the equilibrium constant for an exchange reaction of Y and Al
between two different melts. The results are consistent with experimental data
and provide an atomic-scale explanation of the observed partitioning trends.
Chapter 3 deals with the thermal conductivity of the Earth's lower mantle. We
determine the lattice thermal conductivities of iron-free lower-mantle phases
by means of classical equilibrium MD simulations, in conjunction with the
Green-Kubo approach, over a wide pressure and temperature range. The
conductivities of the individual phases are then parameterized as a function
of density and temperature, and the thermal conductivity of the lower-mantle
aggregate is calculated along a model geotherm. Assuming that the presence of
iron impurities in the minerals reduce their thermal conductivity by 50%, as
suggested by experimental results, we obtain the lattice thermal conductivity
of an iron-bearing lower-mantle aggregate, down to the core-mantle boundary,
where it reaches 8 W/(mK). The lattice contribution to the global heat flux
across the core-mantle boundary is estimated to be 11 terawatts.Die vorliegende Arbeit behandelt zwei Aspekte der chemischen und thermischen
Heterogenität der gegenwärtigen Erde: die Verteilung von Spurenelementen und
die thermische Leitfähigkeit des unteren Mantels. Wir verwenden atomistische
Computersimulationen, um erstens die mikroskopischen Mechanismen aufzuklären,
die den Einbau von Spurenelementen in Silikatschmelzen und ihr
Verteilungsverhalten in Gegenwart von Silikatschmelzen steuern. Zum zweiten
benutzen wir die Methode der atomistischen Modellierung, um den Gitterbeitrag
zur Wärmeleitfähigkeit von Mineralen des unteren Mantels bei hohen Drücken und
Temperaturen zu erhalten. In Kapitel 1 untersuchen wir die Struktur von
Aluminosilikat-Schmelzen und -Gläsern mit 76 mol% SiO2 und unterschiedlichem
Y- und La-Gehalt mit Hilfe sowohl von Ab-initio- und klassischer
Molekulardynamik (MD) als auch von Röntgen- und Neutronenbeugung. Folgende
Trends werden beobachtet: Die durchschnittlichen Koordinationszahlen von Y und
La nehmen mit zunehmendem REE-Gehalt ab, ebenso die durchschnittliche
Koordinationszahl von Al. Außerdem ist die Verteilung der Al-
Koordinationszahlen in den La-haltigen Schmelzen im Vergleich zu den
Y-haltigen Schmelzen zu kleineren Werten verschoben. Diese Trends werden
anhand der Feldstärken der beteiligten Kationen erklärt. Die Ab-initio-
Simulationen zeigen außerdem, dass die Al-Vermeidungsregel in den hier
untersuchten REE-haltigen Aluminosilikatschmelzen verletzt ist. Kapitel 2
widmet sich dem Einbau von Y als Spurenelement in Calcium-
Aluminosilikatschmelzen. Ziel ist es zu verstehen, wie die
Schmelzzusammensetzung, insbesondere der Ca-Gehalt und die Polymerisierung der
Schmelze, das Verteilungsverhalten von Y zwischen Mineralen und Schmelzen oder
zwischen verschiedenen Schmelzen beeinflusst. Die lokale Umgebung von Y in
verschiedenen Schmelzen wird mit Hilfe klassischer MD und EXAFS-Spektroskopie
untersucht. Die Technik der thermodynamischen Integration erlaubt es, die
Gleichgewichtskonstante einer Austauschreaktion von Y und Al zwischen zwei
unterschiedlichen Silikatschmelzen zu bestimmen. Die Ergebnisse stehen im
Einklang mit experimentellen Daten und liefern eine Erklärung der beoachteten
Verteilungstendenzen durch Prozesse auf atomarer Ebene. Kapitel 3 behandelt
die Wärmeleitfähigkeit des unteren Erdmantels. Wir bestimmen den Gitterbeitrag
zur Wärmeleitfähigkeit der eisenfreien Phasen des unteren Mantles mittels
klassischer Gleichgewichts-MD und der Green-Kubo-Methode in einem weiten
Druck- und Temperaturbereich. Die Leitfähigkeiten der einzelnen Phasen werden
dann als Funktion der Dichte und der Temperatur parametrisiert, und die
Leitfähigkeit des Mantelaggregats wird entlang einer Modellgeotherme
berechnet. Unter der Annahme, dass der Eisengehalt der Minerale ihre
Wärmeleitfähigkeit um 50% reduziert, wie es experimentelle Ergebnisse
nahelegen, erhalten wir den Gitterbeitrag zur Wärmeleitfähigkeit eines
eisenhaltigen Aggregats mit der mineralogischen Zusammensetzung des unteren
Mantels bis hinunter zur Kern-Mantel-Grenze, wo er 8 W/(mK) beträgt. Wir
schätzen den Gitterbeitrag zum globalen Wärmefluss durch die Kern-Mantel-
Grenze auf 11 Terawatt
Trace element partitioning between silicate melts - A molecular dynamics approach
Knowledge of trace element partition coefficients is crucial for our understanding of global element cycles. While a great number of experimental studies on mineral-melt partitioning have been performed in the past, the influence of melt structure on partitioning has mostly been considered empirically. This is mainly due to the lack of reliable structure models for typical melts at the relevant pressure and temperature conditions. Molecular dynamics simulations on the other hand may open a new window into this problem as they provide a unique approach to both structural and thermodynamic properties of minerals and melts. In this contribution, we employ first-principles and classical molecular dynamics simulations to (1) explore further a new approach to predict trace element partitioning between several silicate melts and (2) simultaneously investigate the structural controls of the observed partitioning. Specifically, we use a thermodynamic integration scheme to investigate the partitioning behavior of various trace elements (Y, La, As) in a granitic and gabbroic as well as two Ti-bearing melts and compare our data to experimental findings. Our results indicate that, similar to the lattice strain model, partitioning in melts as well seems to depend on an ideal coordination environment for each trace element and on how well this environment can be accommodated in a specific melt. (C) 2017 Elsevier Ltd. All rights reserved
Investigation of structure and dynamics of the hydrated metal–organic framework MIL-53(Cr) using first-principles molecular dynamics
International audienceThe hydration behavior of metal–organic frameworks (MOFs) is of interest both from a practical and from a fundamental point of view: it is linked, on the one hand, to the hydrothermal stability (or instability) of the nanoporous material, which might limit its use in technological applications. On the other hand, it sheds light on the behavior of water in a strongly confined environment. Here, we use first-principles molecular dynamics (MD) to investigate two hydrated phases of the flexible MOF MIL-53(Cr), which adopts a narrow- or a large-pore form, depending on the water loading. Structure and dynamics of the two phases are thoroughly analyzed and compared, with a focus on the hydroxyl group of MIL-53(Cr) and the water molecules in the nanopores. Furthermore, the behavior of the confined water is compared to that of bulk water. Whereas in the narrow-pore form, water is adsorbed at specific crystalline sites, it shows a more disordered, bulk-like structure in the large-pore form. However, reorientation dynamics of water molecules in the latter is considerably slowed down with respect to bulk water, which highlights the confinement effect of the nanoporous framework
Molecular dynamics simulations of Y in silicate melts and implications for trace element partitioning
Element partitioning depends strongly on composition and structure of the involved phases. In this study, we use molecular dynamics simulations to investigate the local environment of Y as an exemplary trace element in four silicate melts with different compositions and thus varying degrees of polymerization. Based on these structural results, we propose a mechanism which explains the observed partitioning trends of Y and other rare-earth elements between crystals and melts or between two melts. With our computational approach, we found a systematic correlation between melt composition and Y coordination as well as Y―O bond lengths, a result which was corroborated by EXAFS spectroscopy on glasses with the same compositions as the simulated melts. Our simulations revealed, moreover, the affinity of Y for network modifiers as second-nearest neighbors (Ca in this study) and the tendency to avoid network formers (Si and Al). This is consistent with the observation that Y (and other rare-earth elements) in general prefer depolymerized to polymerized melts in partitioning experiments (see, e.g., Schmidt et al. (2006)). Furthermore, we used the method of thermodynamic integration to calculate the Gibbs free energy which governs Y partitioning between two exemplary melts. These more quantitative results, too, are in line with the observed partitioning trend
Hydrothermal Breakdown of Flexible Metal–Organic Frameworks: A Study by First-Principles Molecular Dynamics
Hydrothermal Breakdown of Flexible Metal–Organic Frameworks: A Study by First-Principles Molecular Dynamics
Flexible
metal–organic frameworks, also known as soft porous
crystals, have been proposed for a vast number of technological applications,
because they respond by large changes in structure and properties
to small external stimuli, such as adsorption of guest molecules and
changes in temperature or pressure. While this behavior is highly
desirable in applications such as sensing and actuation, their extreme
flexibility can also be synonymous with decreased stability. In particular,
their performance in industrial environments is limited by a lack
of stability at elevated temperatures and in the presence of water.
Here, we use first-principles molecular dynamics to study the hydrothermal
breakdown of soft porous crystals. Focusing on the material MIL-53(Ga),
we show that the weak point of the structure is the bond between the
metal center and the organic linker and elucidate the mechanism by
which water lowers the activation free energy for the breakdown. This
allows us to propose strategies for the synthesis of MOFs with increased
heat and water stability
The structure of Y- and La-bearing aluminosilicate glasses and melts: A combined molecular dynamics and diffraction study
To understand the behavior of rare earth elements (REE) in magmatic systems it is important to characterize in a systematic way their incorporation into silicate melts and glasses. Here, we study the structural environment of the REE Y and La in four aluminosilicate glasses and melts with varying REE content, using a combined simulation and diffraction approach. Glasses are investigated by X-ray and neutron diffraction as well as classical molecular dynamics simulations using two different polarizable ion potentials. Structure models of the corresponding melts are derived from classical and first-principles molecular dynamics simulations. We discuss the effect of temperature on coordination numbers and rationalize the structural changes in response to variations in melt/glass composition in terms of cation field strengths. We find robust evidence that REE and Al coordination numbers decrease with increasing REE content in the investigated melts and glasses. Comparing the two classical potentials, one of them is able to reproduce features of the experimental structure factors with a mixture of corner- and edge-sharing Al-O/REE-O polyhedra, whereas the other potential predicts corner-sharing Al-O/REE-O polyhedra only. (C) 2016 Elsevier B.V. All rights reserved
