631 research outputs found
Impact of the German Lipoprotein Apheresis Registry (DLAR) on therapeutic options to reduce increased Lp(a) levels
BACKGROUND: The German Lipoprotein Apheresis Registry (DLAR) has been initiated by members of the Nephrology Foundation (WiNe), the German association of kidney centres (DN), the German society of nephrology (DGfN) and additional medical associations taking part in the apheresis working group. Its goal is the introduction of a substantial database, suitable to provide statistical evidence for the assessment of extracorporeal procedures. Data have been added to the DLAR since October 2011. In this article, preliminary results are first reported. METHODS AND RESULTS: Data are stored on a secured Internet platform. The recorded information comprises mean values and rates of change in lipid levels (cholesterol, triglyceride, low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol, lipoprotein(a) (Lp(a)) before and after apheresis therapy, blood/plasma volume, frequency and type of adverse effects, medication, vascular events, diagnoses and comorbidity. It is collected by participating apheresis centres from all over Germany. Up until October 2014, a total of 7946 lipoprotein apheresis (LA) treatments of 991 patients (787 with documented LDL-C and 688 with documented Lp(a) levels) via 96 medical accounts were documented and analysed. The current share of Lp(a) patients is 50.6 % (Lp(a) ≥ 60 mg/dl; n = 348/688). For both LDL-C and Lp(a), lowering rates exceeding 60 % have been observed. Likely in conjunction with these reduction rates, the preliminary analysis shows a 90 % decline in major adverse coronary events (MACE) as well as a decrease in major adverse non-coronary events (MANCE) by 69 %. As before, good tolerability and low rates of adverse effects (< 3 %) of LA therapy were found. CONCLUSIONS: The available numbers suggest in parts very good response by the participating centres to the DLAR. Unfortunately, there are also centres that have not documented any patients so far or LA treatments at all. The benchmark values for reduction rates in lipoprotein concentration required by the directives of the German Federal Joint Committee (G-BA) have all been met. The decrease in MACE and MANCE rates currently observed is very promising. However, the comparably short runtime of the registry does not allow for high confidence in the current results. Certainly, reliable data will be extractable in the coming years. Given the high interest expressed by European neighbours, the extension of the registry to the European level should be a future goal for the DLAR as well
Toward an international consensus-Integrating lipoprotein apheresis and new lipid-lowering drugs
Background: Despite advances in pharmacotherapy of lipid disorders, many dyslipidemic patients do not attain sufficient lipid lowering to mitigate risk of atherosclerotic cardiovascular disease. Several classes of novel lipid-lowering agents are being evaluated to reduce atherosclerotic cardiovascular disease risk. Lipoprotein apheresis (LA) is effective in acutely lowering the plasma concentrations of atherogenic lipoproteins including low-density lipoprotein cholesterol and lipoprotein(a), and novel lipid-lowering drugs may dampen the lipid rebound effect of LA, with the possibility that LA frequency may be decreased, in some cases even be discontinued. Sources of material: This document builds on current American Society for Apheresis guidelines and, for the first time, makes recommendations from summarized data of the emerging lipid-lowering drug classes (inhibitors of proprotein convertase subtilisin/kexin type 9 or microsomal triglyceride transfer protein, high-density lipoprotein mimetic), including the available evidence on combination therapy with LA with respect to the management of patients with dyslipidemia. Abstract of findings: Recommendations for different indications are given based on the latest evidence. However, except for lomitapide in homozygous familial hypercholesterolemia and alirocumab/evolocumab in heterozygous familial hypercholesterolemia subjects, limited data are available on the effectiveness and safety of combination therapy. More studies on combining LA with novel lipid-lowering drugs are needed. Conclusion: Novel lipid-lowering agents have potential to improve the performance of LA, but more evidence is needed. The Multidisciplinary International Group for Hemapheresis TherapY and Metabolic DIsturbances Contrast scientific society aims to establish an international registry of clinical experience on LA combination therapy to expand the evidence on this treatment in individuals at high cardiovascular disease risk
Impacts of the Tropical Pacific/Indian Oceans on the Seasonal Cycle of the West African Monsoon
The current consensus is that drought has developed in the Sahel during the second half of the twentieth century as a result of remote effects of oceanic anomalies amplified by local land–atmosphere interactions. This paper focuses on the impacts of oceanic anomalies upon West African climate and specifically aims to identify those from SST anomalies in the Pacific/Indian Oceans during spring and summer seasons, when they were significant. Idealized sensitivity experiments are performed with four atmospheric general circulation models (AGCMs). The prescribed SST patterns used in the AGCMs are based on the leading mode of covariability between SST anomalies over the Pacific/Indian Oceans and summer rainfall over West Africa. The results show that such oceanic anomalies in the Pacific/Indian Ocean lead to a northward shift of an anomalous dry belt from the Gulf of Guinea to the Sahel as the season advances. In the Sahel, the magnitude of rainfall anomalies is comparable to that obtained by other authors using SST anomalies confined to the proximity of the Atlantic Ocean. The mechanism connecting the Pacific/Indian SST anomalies with West African rainfall has a strong seasonal cycle. In spring (May and June), anomalous subsidence develops over both the Maritime Continent and the equatorial Atlantic in response to the enhanced equatorial heating. Precipitation increases over continental West Africa in association with stronger zonal convergence of moisture. In addition, precipitation decreases over the Gulf of Guinea. During the monsoon peak (July and August), the SST anomalies move westward over the equatorial Pacific and the two regions where subsidence occurred earlier in the seasons merge over West Africa. The monsoon weakens and rainfall decreases over the Sahel, especially in August.Peer reviewe
Severe early onset preeclampsia: short and long term clinical, psychosocial and biochemical aspects
Preeclampsia is a pregnancy specific disorder commonly defined as de novo hypertension
and proteinuria after 20 weeks gestational age. It occurs in approximately 3-5% of pregnancies and it is still a major cause of both foetal and maternal morbidity and mortality worldwide1. As extensive research has not yet elucidated the aetiology of preeclampsia, there are no rational preventive or therapeutic interventions
available. The only rational treatment is delivery, which benefits the mother but is not in the interest of the foetus, if remote from term. Early onset preeclampsia (<32 weeks’ gestational age) occurs in less than 1% of pregnancies. It is, however often associated with maternal morbidity as the risk of progression
to severe maternal disease is inversely related with gestational age at onset2. Resulting prematurity is therefore the main cause of neonatal mortality and morbidity
in patients with severe preeclampsia3. Although the discussion is ongoing, perinatal survival is suggested to be increased in patients with preterm preeclampsia
by expectant, non-interventional management. This temporising treatment option to lengthen pregnancy includes the use of antihypertensive medication to control hypertension, magnesium sulphate to prevent eclampsia and corticosteroids
to enhance foetal lung maturity4. With optimal maternal haemodynamic status and reassuring foetal condition this results on average in an extension of 2 weeks. Prolongation of these pregnancies is a great challenge for clinicians to balance between potential maternal risks on one the eve hand and possible foetal benefits on the other. Clinical controversies regarding prolongation of preterm preeclamptic pregnancies still exist – also taking into account that preeclampsia is the leading cause of maternal mortality in the Netherlands5 - a debate which is even more pronounced in very preterm pregnancies with questionable foetal viability6-9. Do maternal risks of prolongation of these very early pregnancies outweigh
the chances of neonatal survival? Counselling of women with very early onset preeclampsia not only comprises of knowledge of the outcome of those particular pregnancies, but also knowledge of outcomes of future pregnancies of these women is of major clinical importance.
This thesis opens with a review of the literature on identifiable risk factors of preeclampsia
Penilaian Kinerja Keuangan Koperasi di Kabupaten Pelalawan
This paper describe development and financial performance of cooperative in District Pelalawan among 2007 - 2008. Studies on primary and secondary cooperative in 12 sub-districts. Method in this stady use performance measuring of productivity, efficiency, growth, liquidity, and solvability of cooperative. Productivity of cooperative in Pelalawan was highly but efficiency still low. Profit and income were highly, even liquidity of cooperative very high, and solvability was good
Current view: indications for extracorporeal lipid apheresis treatment
One of the first investigations concerning extracorporeal treatment of hypercholesterolemia was performed in 1967 by plasma exchange in patients with homozygous or severe heterozygous familial hypercholesterolemia (FH). In the following decades, several specific lipid apheresis systems were developed to efficiently eliminate low-density lipoprotein (LDL) cholesterol and Lp(a) cholesterol in hypercholesterolemic patients. In the early 1980s, the main clinical indication has been homozygous FH including mainly children and pregnant women. In consideration of the current development of lipid-lowering regimens and scientific knowledge of preventing progression of cardiovascular diseases, the spectrum of indications to initiate lipid apheresis was extended due to still insufficient lipid-lowering therapy in some clinical cases. However, a generally accepted indication for lipid apheresis treatment is still under discussion. In Germany, the target-oriented distribution of increasingly limited healthcare resources demand data which support the benefit of established treatment procedures such as lipid apheresis. In recent years, the Federal Joint Committee (G-BA), a paramount decision-making body of the German Healthcare System, issued to reassess the approval of chronic lipid apheresis therapy for regular reimbursement. Therefore, in 2005, an interdisciplinary German Apheresis Working Group has been established by members of both the German societies of nephrology. One of the first goals of this working group was a revision of the indications for lipid apheresis corresponding to current guidelines and recommendations for the treatment of lipid disorders. In addition, recently new pathophysiological perceptions of the impact of lipoproteins on atherogenesis and thrombosis were also considered.Since 2005, the working group met on a regular basis to substantiate the first defined goals. The indications for lipid apheresis were critically revised with respect to actual results from clinical investigations, cardiovascular guidelines, and scientific knowledge and were accepted by the members of the apheresis working group.There is consensus between the medical societies and health insurance funds regarding the need for general accepted guidelines for lipid apheresis. Recommendations for the indications of lipid apheresis were developed, but additionally these results should be confirmed by medical societies to transform them to guidelines. However, due to limited data showing that lipid apheresis has effects on the progression of cardiovascular diseases all members of the apheresis working group support a project for creating a lipid apheresis registry. This apheresis registry has been developed and recently started. The primary goal is to substantiate prospective long-term data on clinical outcome of chronic lipid apheresis treatment and to support additional clinical research activities in this field. In addition, this registry should comply with the actual requests of the Federal Joint Committee (G-BA)
Toward an international consensus-Integrating lipoprotein apheresis and new lipid-lowering drugs
Background: Despite advances in pharmacotherapy of lipid disorders, many dyslipidemic patients do not attain sufficient lipid lowering to mitigate risk of atherosclerotic cardiovascular disease. Several classes of novel lipid-lowering agents are being evaluated to reduce atherosclerotic cardiovascular disease risk. Lipoprotein apheresis (LA) is effective in acutely lowering the plasma concentrations of atherogenic lipoproteins including low-density lipoprotein cholesterol and lipoprotein(a), and novel lipid-lowering drugs may dampen the lipid rebound effect of LA, with the possibility that LA frequency may be decreased, in some cases even be discontinued. Sources of material: This document builds on current American Society for Apheresis guidelines and, for the first time, makes recommendations from summarized data of the emerging lipid-lowering drug classes (inhibitors of proprotein convertase subtilisin/kexin type 9 or microsomal triglyceride transfer protein, high-density lipoprotein mimetic), including the available evidence on combination therapy with LA with respect to the management of patients with dyslipidemia. Abstract of findings: Recommendations for different indications are given based on the latest evidence. However, except for lomitapide in homozygous familial hypercholesterolemia and alirocumab/evolocumab in heterozygous familial hypercholesterolemia subjects, limited data are available on the effectiveness and safety of combination therapy. More studies on combining LA with novel lipid-lowering drugs are needed. Conclusion: Novel lipid-lowering agents have potential to improve the performance of LA, but more evidence is needed. The Multidisciplinary International Group for Hemapheresis TherapY and Metabolic DIsturbances Contrast scientific society aims to establish an international registry of clinical experience on LA combination therapy to expand the evidence on this treatment in individuals at high cardiovascular disease risk
Measurement of the t(t)over-bar production cross section in pp collisions at root s=7 TeV in dilepton final states containing a tau
The top quark pair production cross section is measured in dilepton events with one electron or muon, and one hadronically decaying tau lepton from the decay t (t) over bar -> (l nu(l))((sic)(h)nu((sic)))b (b) over bar, (l = e, mu). The data sample corresponds to an integrated luminosity of 2.0 fb(-1) for the electron channel and 2.2 fb(-1) for the muon channel, collected by the CMS detector at the LHC. This is the first measurement of the t (t) over bar cross section explicitly including tau leptons in proton- proton collisions at root s = 7 TeV. The measured value sigma(t (t) over bar) = 143 +/- 14(stat) +/- 22(syst) +/- 3(lumi) pb is consistent with the standard model predictions
Measurements of jet multiplicity and differential production cross sections of Z+jets events in proton-proton collisions at sqrt(s)=7TeV
Measurements of differential cross sections are presented for the production of a Z boson and at least one hadronic jet in proton-proton collisions at root s = 7 TeV, recorded by the CMS detector, using a data sample corresponding to an integrated luminosity of 4.9 fb(-1). The jet multiplicity distribution is measured for up to six jets. The differential cross sections are measured as a function of jet transverse momentum and pseudorapidity for the four highest transverse momentum jets. The distribution of the scalar sum of jet transverse momenta is also measured as a function of the jet multiplicity. The measurements are compared with theoretical predictions at leading and next-to-leading order in perturbative QCD.Austrian Federal Ministry of Science, Research and EconomyAustrian Science FundBelgian Fonds de la Recherche ScientifiqueFonds voor Wetenschappelijk OnderzoekConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Bulgarian Ministry of Education and ScienceCERNChinese Academy of SciencesMinistry of Science and TechnologyNational Natural ScienceFoundationofChinaColombian FundingAgency (COLCIENCIAS)Croatian Ministry of Science, Education, and SportCroatian Science FoundationResearch Promotion Foundation, CyprusMinistry of Education and Research, EstoniaEstonian Research Council, EstoniaEuropean Regional Development Fund, EstoniaAcademy of FinlandFinnish Ministry of Education and CultureHelsinki Institute of PhysicsInstitut National de Physique Nucleaire et de Physique des Particules / CNRS, FranceCommissariat a l'Energie Atomique et aux Energies Alternatives / CEA, FranceBundesministerium fur Bildung und Forschung, GermanyDeutsche Forschungsgemeinschaft, GermanyHelmholtz-Gemeinschaft Deutscher Forschungs zentren, GermanyGeneral Secretariat for Research and Technology, GreeceNational Scientific Research Foundation, HungaryNational Innovation Office, HungaryDepartment of Atomic Energy, IndiaDepartment of Science and Technology, IndiaInstitute for Studies in Theoretical Physics and Mathematics, IranScience Foundation, IrelandIstituto Nazionale di Fisica Nucleare, ItalyKorean Ministry of Education, Science and Technology, Republic of KoreaWorld Class University program of NRF, Republic of KoreaLithuanian Academy of SciencesMinistry of Education, and University of Malaya (Malaysia)Mexican Funding Agency (CINVESTAV)Mexican Funding Agency (CONACYT)Mexican Funding Agency (SEP)Mexican Funding Agency (UASLP-FAI)Ministry of Business, Innovation and Employment, New ZealandPakistan Atomic Energy CommissionMinistry of Science and Higher Education, PolandNational Science Centre, PolandFundacao para a Cienciaea Tecnologia, PortugalJINR, DubnaMinistry of Education and Science of the Russian FederationFederal Agency of Atomic Energy of the Russian FederationRussian Academy of SciencesRussian Foundation for Basic ResearchMinistry of Education, Science and Technological Development of SerbiaSecretaria de Estado de Investigacion, Desarrollo e Innovacion and Programa Consolider-Ingenio, SpainSwiss Funding Agency (ETH Board)Swiss Funding Agency (ETH Zurich)Swiss Funding Agency (PSI)Swiss Funding Agency (SNF)Swiss Funding Agency (UniZH)Swiss Funding Agency (Canton Zurich)Swiss Funding Agency (SER)Ministry of Science and Technology, TaipeiThailand Center of Excellence in PhysicsInstitute for the Promotion of Teaching Science andTechnologyofThailandSpecialTaskForceforActivating ResearchNational Science and Technology Development Agency of ThailandScientific and Technical Research Council of TurkeyTurkish Atomic Energy AuthorityNational Academy of Sciences of Ukraine, UkraineState Fund for Fundamental Researches, UkraineScience and Technology Facilities Council, United KingdomU.S. Department of EnergyU.S. National Science FoundationMarie Curie programEuropean Research CouncilEPLANET (European Union)Leventis FoundationA. P. Sloan FoundationAlexander von Humboldt FoundationBelgian Federal Science Policy OfficeFonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium)Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium)Ministry of Education, Youth and Sports (MEYS) of the Czech RepublicCouncil ofScienceandIndustrialResearch, IndiaHOMINGPLUS program of Foundation for Polish ScienceEuropean UnionRegional Development FundCompagnia di San Paolo (Torino)Consorzio per la Fisica (Trieste)MIUR (Italy)Thalis and Aristeia programsEU-ESFGreekNSRFNationalPrioritiesResearchProgram by Qatar National Research FundYerevan Phys Inst, Yerevan 375036, ArmeniaInst Hochenergiephys OeAW, Vienna, AustriaNatl Ctr Particle &High Energy Phys, Minsk, ByelarusUniv Antwerp, Antwerp, BelgiumVrije Univ Brussel, Brussels, BelgiumUniv Libre Bruxelles, Brussels, BelgiumUniv Ghent, B-9000 Ghent, BelgiumCatholic Univ Louvain, Louvain La Neuve, BelgiumUniv Mons, B-7000 Mons, BelgiumCtr Brasileiro Pesquisas Fis, Rio De Janeiro, BrazilUniv Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, BrazilUniv Estadual Paulista, Sao Paulo, BrazilUniv Fed ABC, Sao Paulo, BrazilInst Nucl Energy Res, Sofia, BulgariaUniv Sofia, BU-1126 Sofia, BulgariaInst High Energy Phys, Beijing 100039, Peoples R ChinaPeking Univ, State Key Lab Nucl Phys &Technol, Beijing 100871, Peoples R ChinaUniv Los Andes, Bogota, ColombiaUniv Split, Fac Elect Engn, Mech Engn &Naval Architecture, Split, CroatiaUniv Split, Fac Sci, Split, CroatiaRudjer Boskovic Inst, Zagreb, CroatiaUniv Cyprus, CY-1678 Nicosia, CyprusCharles Univ Prague, Prague, Czech RepublicAcad Sci Res &Technol Arab Republ Egypt, Egyptian Network High Energy Phys, Cairo, EgyptNICPB, Tallinn, EstoniaUniv Helsinki, Dept Phys, Helsinki, FinlandHelsinki Inst Phys, Helsinki, FinlandLappeenranta Univ Technol, Lappeenranta, FinlandCEA Saclay, DSM IRFU, F-91191 Gif Sur Yvette, FranceEcole Polytech, IN2P3 CNRS, Lab Leprince Ringuet, Palaiseau, FranceUniv Strasbourg, Univ Haute Alsace Mulhouse, Inst Puridisciplinaire Hubert Curien, CNRS IN2P3, Strasbourg, FranceCtr Calcul Inst Natl Phys Nucl &Phys Particules, CNRS IN2P3, Villeurbanne, FranceUniv Lyon 1, Univ Lyon, Inst Phys Nucl Lyon, CNRS IN2P3, F-69622 Villeurbanne, FranceTbilisi State Univ, Inst High Energy Phys &Informatizat, GE-380086 Tbilisi, Rep of GeorgiaRWTH Aachen Univ I, Inst Phys, Aachen, GermanyRWTH Aachen Univ III, Phys Inst A, Aachen, GermanyRWTH Aachen Univ III, Phys Inst B, Aachen, GermanyDESY, Hamburg, GermanyUniv Hamburg, Hamburg, GermanyInst Expt Kernphys, Karlsruhe, GermanyNCSR Demokritos, Inst Nucl &Particle Phys, Aghia Paraskevi, GreeceUniv Athens, Athens, GreeceUniv Ioannina, GR-45110 Ioannina, GreeceWigner Res Ctr Phys, Budapest, HungaryInst Nucl Res ATOMKI, Debrecen, HungaryUniv Debrecen, Debrecen, HungaryNatl Inst Sci Educ &Res, Bhubaneswar, Orissa, IndiaPanjab Univ, Chandigarh 160014, IndiaUniv Delhi, Delhi 110007, IndiaSaha Inst Nucl Phys, Kolkata, IndiaBhabha Atom Res Ctr, Mumbai 400085, Maharashtra, IndiaTata Inst Fundamental Res, Mumbai 400005, Maharashtra, IndiaInst Res Fundamental Sci IPM, Tehran, IranUniv Coll Dublin, Dublin 2, IrelandIst Nazl Fis Nucl, Sez Bari, I-70126 Bari, ItalyUniv Bari, Bari, ItalyPolitecn Bari, Bari, ItalyIst Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, ItalyUniv Bologna, Bologna, ItalyIst Nazl Fis Nucl, Sez Catania, I-95129 Catania, ItalyUniv Catania, Catania, ItalyCSFNSM, Catania, ItalyIst Nazl Fis Nucl, Sez Firenze, I-50125 Florence, ItalyUniv Florence, Florence, ItalyIst Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, ItalyIst Nazl Fis Nucl, Sez Genova, I-16146 Genoa, ItalyUniv Genoa, Genoa, ItalyIst Nazl Fis Nucl, Sez Milano Bicocca, I-20133 Milan, ItalyUniv Milano Bicocca, Milan, ItalyIst Nazl Fis Nucl, Sez Napoli, I-80125 Naples, ItalyUniv Naples Federico II, Naples, ItalyUniv Basilicata Potenza, Naples, ItalyUniv G Marconi Roma, Naples, ItalyIst Nazl Fis Nucl, Sez Padova, Padua, ItalyUniv Padua, Padua, ItalyUniv Trento, Padua, ItalyIst Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, ItalyUniv Pavia, I-27100 Pavia, ItalyIst Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, ItalyUniv Perugia, I-06100 Perugia, ItalyIst Nazl Fis Nucl, Sez Pisa, Pisa, ItalyUniv Pisa, Pisa, ItalyScuola Normale Super Pisa, Pisa, ItalyIst Nazl Fis Nucl, Sez Roma, Rome, ItalyUniv Rome, Rome, ItalyIst Nazl Fis Nucl, Sez Torino, I-10125 Turin, ItalyUniv Turin, Turin, ItalyUniv Piemonte Orientale Novara, Turin, ItalyIst Nazl Fis Nucl, Sez Trieste, Trieste, ItalyUniv Trieste, Trieste, ItalyKangwon Natl Univ, Chunchon, South KoreaKyungpook Natl Univ, Daegu, South KoreaChonbuk Natl Univ, Jeonju 561756, South KoreaChonnam Natl Univ, Inst Univ &Elementary Particles, Kwangju, South KoreaKorea Univ, Seoul, South KoreaUniv Seoul, Seoul, South KoreaSungkyunkwan Univ, Suwon, South KoreaVilnius Univ, Vilnius, LithuaniaUniv Malaya, Natl Ctr Particle Phys, Kuala Lumpur, MalaysiaCtr Invest &Estudios Avanzados, IPN, Mexico City, DF, MexicoUniv Iberoamer, Mexico City, DF, MexicoBenemerita Univ Autonoma Puebla, Puebla, MexicoUniv Autonoma San Luis Potosi, San Luis Potosi, MexicoUniv Auckland, Auckland 1, New ZealandUniv Canterbury, Christchurch 1, New ZealandQuaid I Azam Univ, Natl Ctr Phys, Islamabad, PakistanNatl Ctr Nucl Res, Otwock, PolandUniv Warsaw, Fac Phys, Inst Expt Phys, Warsaw, PolandLab Instrumentacao &Fis Expt Particulas, Lisbon, PortugalJoint Inst Nucl Res, Dubna, RussiaPetersburg Nucl Phys Inst, St Petersburg, RussiaRussian Acad Sci, Inst Nucl Res, Moscow 117312, RussiaInst Theoret &Expt Phys, Moscow 117259, RussiaPN Lebedev Phys Inst, Moscow 117924, RussiaMoscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow, RussiaInst High Energy Phys, State Res Ctr Russian Federat, Protvino, RussiaUniv Belgrade, Fac Phys, Belgrade 11001, SerbiaVinca Inst Nucl Sci, Belgrade, SerbiaCIEMAT, E-28040 Madrid, SpainUniv Autonoma Madrid, Madrid, SpainUniv Oviedo, Oviedo, SpainUniv Cantabria, CSIC, IFCA, E-39005 Santander, SpainCERN, European Org Nucl Res, CH-1211 Geneva, SwitzerlandPaul Scherrer Inst, Villigen, SwitzerlandETH, Inst Particle Phys, Zurich, SwitzerlandUniv Zurich, Zurich, SwitzerlandNatl Cent Univ, Chungli 32054, TaiwanNatl Taiwan Univ, Taipei 10764, TaiwanChulalongkorn Univ, Fac Sci, Dept Phys, Bangkok, ThailandCukurova Univ, Adana, TurkeyMiddle E Tech Univ, Dept Phys, TR-06531 Ankara, TurkeyBogazici Univ, Istanbul, TurkeyIstanbul Tech Univ, TR-80626 Istanbul, TurkeyKharkov Phys &Technol Inst, Natl Sci Ctr, UA-310108 Kharkov, UkraineUniv Bristol, Bristol, Avon, EnglandRutherford Appleton Lab, Didcot OX11 0QX, Oxon, EnglandUniv London Imperial Coll Sci Technol &Med, London, EnglandBrunel Univ, Uxbridge UB8 3PH, Middx, EnglandBaylor Univ, Waco, TX 76798 USAUniv Alabama, Tuscaloosa, AL USABoston Univ, Boston, MA 02215 USABrown Univ, Providence, RI 02912 USAUniv Calif Davis, Davis, CA 95616 USAUniv Calif Los Angeles, Los Angeles, CA USAUniv Calif Riverside, Riverside, CA 92521 USAUniv Calif San Diego, La Jolla, CA 92093 USAUniv Calif Santa Barbara, Santa Barbara, CA 93106 USACALTECH, Pasadena, CA 91125 USACarnegie Mellon Univ, Pittsburgh, PA 15213 USAUniv Colorado, Boulder, CO 80309 USACornell Univ, Ithaca, NY USAFairfield Univ, Fairfield, CT 06430 USAFermilab Natl Accelerator Lab, Batavia, IL 60510 USAUniv Florida, Gainesville, FL USAFlorida Int Univ, Miami, FL 33199 USAFlorida State Univ, Tallahassee, FL 32306 USAFlorida Inst Technol, Melbourne, FL 32901 USAUniv Illinois, Chicago, IL USAUniv Iowa, Iowa City, IA USAJohns Hopkins Univ, Baltimore, MD USAUniv Kansas, Lawrence, KS 66045 USAKansas State Univ, Manhattan, KS 66506 USALawrence Livermore Natl Lab, Livermore, CA USAUniv Maryland, College Pk, MD 20742 USAMIT, Cambridge, MA 02139 USAUniv Minnesota, Minneapolis, MN USAUniv Mississippi, Oxford, MS USAUniv Nebraska, Lincoln, NE USASUNY Buffalo, Buffalo, NY 14260 USANortheastern Univ, Boston, MA 02115 USANorthwestern Univ, Evanston, IL USAUniv Notre Dame, Notre Dame, IN 46556 USAOhio State Univ, Columbus, OH 43210 USAPrinceton Univ, Princeton, NJ 08544 USAUniv Puerto Rico, Mayaguez, PR USAPurdue Univ, W Lafayette, IN 47907 USAPurdue Univ Calumet, Hammond, LA USARice Univ, Houston, TX USAUniv Rochester, Rochester, NY 14627 USARockefeller Univ, New York, NY 10021 USARutgers State Univ, Piscataway, NJ USAUniv Tennessee, Knoxville, TN USATexas A&M Univ, College Stn, TX USATexas Tech Univ, Lubbock, TX 79409 USAVanderbilt Univ, Nashville, TN 37235 USAUniv Virginia, Charlottesville, VA USAWayne State Univ, Detroit, MI USAUniv Wisconsin, Madison, WI 53706 USAVienna Univ Technol, A-1040 Vienna, AustriaUniv Haute Alsace Mulhouse, Univ Strasbourg, Inst Pluridisciplinaire Hubert Curien, CNRS IN2P3, Strasbourg, FranceUniv Estadual Campinas, Campinas, SP, BrazilSuez Univ, Suez, EgyptCairo Univ, Cairo, EgyptFayoum Univ, Al Fayyum, EgyptBritish Univ Egypt, Cairo, EgyptAin Shams Univ, Cairo, EgyptUniv Haute Alsace, Mulhouse, FranceBrandenburg Tech Univ Cottbus, Cottbus, GermanyInst Nucl Res, ATOMKI, H-4001 Debrecen, HungaryEotvos Lorand Univ, Budapest, HungaryVisva Bharati Univ, Santini Ketan, W Bengal, IndiaKing Abdulaziz Univ, Jeddah 21413, Saudi ArabiaUniv Ruhuna, Matara, Sri LankaIsfahan Univ Technol, Esfahan, IranSharif Univ Technol, Tehran, IranIslamic Azad Univ, Plasma Phys Res Ctr, Sci &Res Branch, Tehran, IranIst Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Legnaro, ItalyUniv Siena, I-53100 Siena, ItalyCNRS, IN2P3, Paris, FranceUniv Michoacana, Morelia, Michoacan, MexicoSt Petersburg State Polytech Univ, St Petersburg, RussiaUniv Rome, Fac Ingn, Rome, ItalyIst Nazl Fis Nucl, Scuola Normale &Sez, Pisa, ItalyAlbert Einstein Ctr Fundamental Phys, Bern, SwitzerlandGaziosmanpasa Univ, Tokat, TurkeyAdiyaman Univ, Adiyaman, TurkeyCag Univ, Mersin, TurkeyMersin Univ, Mersin, TurkeyIzmir Inst Technol, Izmir, TurkeyOzyegin Univ, Istanbul, TurkeyMarmara Univ, Istanbul, TurkeyKafkas Univ, Kars, TurkeyMimar Sinan Univ, Istanbul, TurkeyUniv Southampton, Sch Phys &Astron, Southampton, Hants, EnglandArgonne Natl Lab, Argonne, IL 60439 USAErzincan Univ, Erzincan, TurkeyYildiz Tekn Univ, Istanbul, TurkeyTexas A&M Univ, Doha, QatarUniv Estadual Paulista, Instituto de Física Teórica (IFT), Sao Paulo, BrazilEstonian Research Council, Estonia: IUT23-4Estonian Research Council, Estonia: IUT23-6MIUR (Italy): 20108T4XT
- …
