313 research outputs found

    Особенности митохондриальной патологии у человека

    No full text
    Статья посвящена анализу современного уровня знаний о механизмах возникновения и особенностях митохондриальной патологии, обусловливающих сложности ее диагностики и терапии.Стаття присвячена аналізу сучасного рівня знань про механізми виникнення та особливості виникнення мітохондріальної патології, що обумовлюють складність її діагностики та терапії.This article is concerned with the analysis of the present findings about the mechanisms of emergency and features of mitochondrial abnormality which lead to the difficulties in its diagnostics and therapy

    What future research should bring to help resolving the debate about the efficacy of EEG-neurofeedback in children with ADHD

    Get PDF
    In recent years a rising amount of randomized controlled trials, reviews, and meta-analyses relating to the efficacy of electroencephalographic-neurofeedback (EEG-NF) in children with attention-deficit/hyperactivity disorder (ADHD) have been published. Although clinical reports and open treatment studies suggest EEG-NF to be effective, double blind placebo-controlled studies as well as a rigorous meta-analysis failed to find support for the efficacy of EEG-NF. Since absence of evidence does not equate with evidence of absence, we will outline how future research might overcome the present methodological limitations. To provide conclusive evidence for the presence or absence of the efficacy of EEG-NF in the treatment of ADHD, there is a need to set up a well-designed study that ensures optimal implementation and embedding of the training, and possibly incorporates different forms of neurofeedback

    Model order reduction of large scale ODE systems : MOR for ANSYS versus ROM workbench

    Get PDF
    In this paper we compare the numerical results obtained by different model order reduction software tools, in order to test their scalability for relevant problems of the microelectronic-industry. MOR for ANSYS [2J is implemented in C++ and ROM Workbench [3J is a MATLAB code. The chosen benchmarks are large scale linear ODE systems, which arise from the finite element discretisation of electro-thermal MEMS models

    Stepped-wedge randomised trial of laparoscopic ventral mesh rectopexy in adults with chronic constipation: Study protocol for a randomized controlled trial

    Get PDF
    BACKGROUND: Laparoscopic ventral mesh rectopexy (LVMR) is an established treatment for external full-thickness rectal prolapse. However, its clinical efficacy in patients with internal prolapse is uncertain due to the lack of high-quality evidence. METHODS: An individual level, stepped-wedge randomised trial has been designed to allow observer-blinded data comparisons between patients awaiting LVMR with those who have undergone surgery. Adults with symptomatic internal rectal prolapse, unresponsive to prior conservative management, will be eligible to participate. They will be randomised to three arms with different delays before surgery (0, 12 and 24 weeks). Efficacy outcome data will be collected at equally stepped time points (12, 24, 36 and 48 weeks). The primary objective is to determine clinical efficacy of LVMR compared to controls with reduction in the Patient Assessment of Constipation Quality of Life (PAC-QOL) at 24 weeks serving as the primary outcome. Secondary objectives are to determine: (1) the clinical effectiveness of LVMR to 48 weeks to a maximum of 72 weeks; (2) pre-operative determinants of outcome; (3) relevant health economics for LVMR; (4) qualitative evaluation of patient and health professional experience of LVMR and (5) 30-day morbidity and mortality rates. DISCUSSION: An individual-level, stepped-wedge, randomised trial serves the purpose of providing an untreated comparison for the active treatment group, while at the same time allowing the waiting-listed participants an opportunity to obtain the intervention at a later date. In keeping with the basic ethical tenets of this design, the average waiting time for LVMR (12 weeks) will be shorter than that for routine services (24 weeks)

    Approximating the influence coefficients of non-planar elastic solids for conformal contact analysis

    Get PDF
    The exact contact theory is an efficient alternative to the more general yet computationally expensive Finite Element Method for the detailed study of elastostatic contact problems. For its application in conformal contact problems, the exact contact theory needs to be fed with influence coefficients (ICs) appropriate for non-planar solids. An analytical approximation of the ICs for non-planar solids was proposed in a previous work, avoiding the involved process generally necessary to obtain ICs accurately. This work presents further developments of this approximation, further comparison with numerically obtained ICs, and evaluates the errors incurred when using approximated ICs in conformal contact.This work has been partly financed within the European Horizon 2020 Joint Technology Initiative Shift2Rail, through contract no. 826255 (IN2TRACK2). The authors wish to thank as well the Spanish Research Ministry MICINN/Economy and Competitiveness Ministry MINECO and MCI/AEI for their funding through contracts TRA2014-59599-R and PID2019-109483RB-I00, including funding by the FEDER-ERDF European Regional Development Fund, and also the Basque Government for financial assistance through IT919-1

    Surface modification of multilayer graphene electrodes by local printing of platinum nanoparticles using spark ablation for neural interfacing

    Get PDF
    In this paper, we present the surface modification of multilayer graphene electrodes with platinum (Pt) nanoparticles (NPs) using spark ablation. This method yields an individually selective local printing of NPs on an electrode surface at room temperature in a dry process. NP printing is performed as a post-process step to enhance the electrochemical characteristics of graphene electrodes. The NP-printed electrode shows significant improvements in impedance, charge storage capacity (CSC), and charge injection capacity (CIC), versus the equivalent electrodes without NPs. Specifically, electrodes with 40% NP surface density demonstrate 4.5 times lower impedance, 15 times higher CSC, and 4 times better CIC. Electrochemical stability, assessed via continuous cyclic voltammetry (CV) and voltage transient (VT) tests, indicated minimal deviations from the initial performance, while mechanical stability, assessed via ultrasonic vibration, is also improved after the NP printing. Importantly, NP surface densities up to 40% maintain the electrode optical transparency required for compatibility with optical imaging and optogenetics. These results demonstrate selective NP deposition and local modification of electrochemical properties in graphene electrodes for the first time, enabling the cohabitation of graphene electrodes with different electrochemical and optical characteristics on the same substrate for neural interfacing.</p

    Surface modification of multilayer graphene electrodes by local printing of platinum nanoparticles using spark ablation for neural interfacing

    Get PDF
    In this paper, we present the surface modification of multilayer graphene electrodes with platinum (Pt) nanoparticles (NPs) using spark ablation. This method yields an individually selective local printing of NPs on an electrode surface at room temperature in a dry process. NP printing is performed as a post-process step to enhance the electrochemical characteristics of graphene electrodes. The NP-printed electrode shows significant improvements in impedance, charge storage capacity (CSC), and charge injection capacity (CIC), versus the equivalent electrodes without NPs. Specifically, electrodes with 40% NP surface density demonstrate 4.5 times lower impedance, 15 times higher CSC, and 4 times better CIC. Electrochemical stability, assessed via continuous cyclic voltammetry (CV) and voltage transient (VT) tests, indicated minimal deviations from the initial performance, while mechanical stability, assessed via ultrasonic vibration, is also improved after the NP printing. Importantly, NP surface densities up to 40% maintain the electrode optical transparency required for compatibility with optical imaging and optogenetics. These results demonstrate selective NP deposition and local modification of electrochemical properties in graphene electrodes for the first time, enabling the cohabitation of graphene electrodes with different electrochemical and optical characteristics on the same substrate for neural interfacing.</p

    A General Approach for Predicting the Filtration of Soft and Permeable Colloids: The Milk Example

    Get PDF
    Membrane filtration operations (ultra-, microfiltration) are now extensively used for concentrating or separating an ever-growing variety of colloidal dispersions. However, the phenomena that determine the efficiency of these operations are not yet fully understood. This is especially the case when dealing with colloids that are soft, deformable, and permeable. In this paper, we propose a methodology for building a model that is able to predict the performance (flux, concentration profiles) of the filtration of such objects in relation with the operating conditions. This is done by focusing on the case of milk filtration, all experiments being performed with dispersions of milk casein micelles, which are sort of ″natural″ colloidal microgels. Using this example, we develop the general idea that a filtration model can always be built for a given colloidal dispersion as long as this dispersion has been characterized in terms of osmotic pressure Π and hydraulic permeability k. For soft and permeable colloids, the major issue is that the permeability k cannot be assessed in a trivial way like in the case for hard-sphere colloids. To get around this difficulty, we follow two distinct approaches to actually measure k: a direct approach, involving osmotic stress experiments, and a reverse-calculation approach, that consists of estimating k through well-controlled filtration experiments. The resulting filtration model is then validated against experimental measurements obtained from combined milk filtration/SAXS experiments. We also give precise examples of how the model can be used, as well as a brief discussion on the possible universality of the approach presented here
    corecore