266 research outputs found
Superfluid nuclear matter calculations
We present a method to calculate nuclear matter properties in the superfluid
phase. The method is based on the use of self-consistent off-shell nucleon
propagators in the T-matrix equation. Such a complete treatment of the spectral
function, is required below and around due to a pseudogap formation in
the spectral function. In the superfluid phase we introduce the anomalous
self-energy in the fermion propagators and in the T-matrix equation,
consistently with the strong coupling BCS equations. The equations for the
nucleon spectral function include both a contribution of condensed and
scattering pairs. The method is illustrated by numerical calculations. Above
pseudogap formation is visible in the spectral function and below a
superfluid gap also appears.Comment: correted version, appendix on numerical methods adde
Towards a fully self-consistent spectral function of the nucleon in nuclear matter
We present a calculation of nuclear matter which goes beyond the usual
quasi-particle approximation in that it includes part of the off-shell
dependence of the self-energy in the self-consistent solution of the
single-particle spectrum. The spectral function is separated in contributions
for energies above and below the chemical potential. For holes we approximate
the spectral function for energies below the chemical potential by a
-function at the quasi-particle peak and retain the standard form for
energies above the chemical potential. For particles a similar procedure is
followed. The approximated spectral function is consistently used at all levels
of the calculation. Results for a model calculation are presented, the main
conclusion is that although several observables are affected by the inclusion
of the continuum contributions the physical consistency of the model does not
improve with the improved self-consistency of the solution method. This in
contrast to expectations based on the crucial role of self-consistency in the
proofs of conservation laws.Comment: 26 pages Revtex with 4 figures, submitted to Phys. Rev.
Saturation of nuclear matter and short-range correlations
A fully self-consistent treatment of short-range correlations in nuclear
matter is presented. Different implementations of the determination of the
nucleon spectral functions for different interactions are shown to be
consistent with each other. The resulting saturation densities are closer to
the empirical result when compared with (continuous-choice)
Brueckner-Hartree-Fock values. Arguments for the dominance of short-range
correlations in determining the nuclear-matter saturation density are
presented. A further survey of the role of long-range correlations suggests
that the inclusion of pionic contributions to ring diagrams in nuclear matter
leads to higher saturation densities than empirically observed. A possible
resolution of the nuclear-matter saturation problem is suggested.Comment: 5 pages, 1 figure, to be published in Phys.Rev.Let
In medium T-matrix for superfluid nuclear matter
We study a generalized ladder resummation in the superfluid phase of the
nuclear matter. The approach is based on a conserving generalization of the
usual T-matrix approximation including also anomalous self-energies and
propagators. The approximation here discussed is a generalization of the usual
mean-field BCS approach and of the in medium T-matrix approximation in the
normal phase. The numerical results in this work are obtained in the
quasi-particle approximation. Properties of the resulting self-energy,
superfluid gap and spectral functions are studied.Comment: 38 pages, 19 figures, Introduction rewritten, Refs. adde
A Self-Consistent Solution to the Nuclear Many-Body Problem at Finite Temperature
The properties of symmetric nuclear matter are investigated within the
Green's functions approach. We have implemented an iterative procedure allowing
for a self-consistent evaluation of the single-particle and two-particle
propagators. The in-medium scattering equation is solved for a realistic
(non-separable) nucleon-nucleon interaction including both particle-particle
and hole-hole propagation. The corresponding two-particle propagator is
constructed explicitely from the single-particle spectral functions. Results
are obtained for finite temperatures and an extrapolation to T=0 is presented.Comment: 11 pages 5 figure
Spontaneous breaking of rotational symmetry in superconductors
We show that homogeneous superconductors with broken spin/isospin symmetry
lower their energy via a transition to a novel superconducting state where the
Fermi-surfaces are deformed to a quasi-ellipsoidal form at zero total momentum
of Cooper pairs. In this state, the gain in the condensation energy of the
pairs dominates over the loss in the kinetic energy caused by the lowest order
(quadrupole) deformation of Fermi-surfaces from the spherically symmetric form.
There are two energy minima in general, corresponding to the deformations of
the Fermi-spheres into either prolate or oblate forms. The phase transition
from spherically symmetric state to the superconducting state with broken
rotational symmetry is of the first order.Comment: 5 pages, including 3 figures, published versio
Short-range correlations in nuclear matter using Green's functions within a discrete pole approximation
We treat short-range correlations in nuclear matter, induced by the repulsive
core of the nucleon-nucleon potential, within the framework of a
self-consistent Green's function theory. The effective in-medium interaction
sums the ladder diagrams of both the particle-particle and hole-hole type. The
demand of self-consistency results in a set of nonlinear equations which must
be solved by iteration. We explore the possibility of approximating the
single-particle Green's function by a limited number of poles and residues.Comment: 9 pages, 3 eps-figures; added two tables dealing with calculations
including larger sets of BAGEL-pole
Correlations and the Cross Section of Exclusive () Reactions for O
The reduced cross section for exclusive () reactions has been studied
in DWIA for the example of the nucleus O using a spectral function
containing effects of correlations. The spectral function is evaluated directly
for the finite nucleus starting from a realistic nucleon-nucleon interaction
within the framework of the Green's function approach. The emphasis is focused
on the correlations induced by excitation modes at low energies described
within a model-space of shell-model configurations including states up to the
shell. Cross sections for the -wave quasi-hole transitions at low
missing energies are presented and compared with the most recent experimental
data. In the case of the so-called perpendicular kinematics the reduced cross
section derived in DWIA shows an enhancement at high missing momenta as
compared to the PWIA result. Furthermore the cross sections for the - and
-wave quasi-hole transitions are presented and compared to available data at
low missing momenta. Also in these cases, which cannot be described in a model
without correlations, a good agreement with the experiment is obtained.Comment: 12 pages, LaTeX, 4 figures include
S-pairing in neutron matter. I. Correlated Basis Function Theory
S-wave pairing in neutron matter is studied within an extension of correlated
basis function (CBF) theory to include the strong, short range spatial
correlations due to realistic nuclear forces and the pairing correlations of
the Bardeen, Cooper and Schrieffer (BCS) approach. The correlation operator
contains central as well as tensor components. The correlated BCS scheme of
Ref. [Nucl. Phys. A363 (1981) 383], developed for simple scalar correlations,
is generalized to this more realistic case. The energy of the correlated pair
condensed phase of neutron matter is evaluated at the two--body order of the
cluster expansion, but considering the one--body density and the corresponding
energy vertex corrections at the first order of the Power Series expansion.
Based on these approximations, we have derived a system of Euler equations for
the correlation factors and for the BCS amplitudes, resulting in correlated non
linear gap equations, formally close to the standard BCS ones. These equations
have been solved for the momentum independent part of several realistic
potentials (Reid, Argonne v_{14} and Argonne v_{8'}) to stress the role of the
tensor correlations and of the many--body effects. Simple Jastrow correlations
and/or the lack of the density corrections enhance the gap with respect to
uncorrelated BCS, whereas it is reduced according to the strength of the tensor
interaction and following the inclusion of many--body contributions.Comment: 20 pages, 8 figures, 1 tabl
Nuclear Self-energy and Realistic Interactions
The structure of nucleon self-energy in nuclear matter is evaluated for
various realistic models of the nucleon-nucleon (NN) interaction. Starting from
the Brueckner-Hartree-Fock approximation without the usual angle-average
approximation, the effects of hole-hole contributions and a self-consistent
treatment within the framework of the Green function approach are investigated.
Special attention is paid to the predictions for the spectral function
originating from various models of the NN interaction which all yield an
accurate fit for the NN phase shifts.Comment: 26 pages, 12 figure
- …
