643 research outputs found

    The existence of a stable noncollinear phase in a Heisenberg model with a complex structure

    Full text link
    We have analyzed the properties of a noncollinear magnetic phase obtained in the mean-field analysis of the model of two coupled Heisenberg subsystems. The domain of its existence and stability is narrow and depends on the ratio between the averaged over nearest neighbours microscopic exchange parameters.Comment: 7 pages, miktex, 3 figure

    Magnetic properties of the ferrimagnetic cobaltite CaBaCo4O7

    Full text link
    The magnetic properties of the ferrimagnetic cobaltite CaBaCo4_4O7_7 are systematically investigated. We find that the susceptibility exhibits a downward deviation below \sim 360 K, suggesting the occurrence of short range magnetic correlations at temperature well above TCT_C. The effective moment is determined to be 4.5 μB\mu_B/f.u, which is consistent with that expected for the Co2+^{2+}/Co3+^{3+} high spin species. Using a criterion given by Banerjee [Phys. Lett. \textbf{12}, 16 (1964)], we demonstrate that the paramagnetic to ferrimagnetic transition in CaBaCo4_4O7_7 has a first order character.Comment: 9 pages, 4 figures. To be published in Solid State Communication

    The 3d-to-4s-by-2p highway to superconductivity in cuprates

    Full text link
    High-temperature superconductors are nowadays found in great variety and hold technological promise. It is still an unsolved mystery that the critical temperature T_c of the basic cuprates is so high. The answer might well be hidden in a conventional corner of theoretical physics, overlooked in the recent hunt for exotic explanations of new effects in these materials. A forgotten intra-atomic s-d two-electron exchange in the Cu atom is found to provide a strong (~eV) electron pairing interaction. A Bardeen-Cooper-Schrieffer approach can explain the main experimental observations and predict the correct d_{x^2-y^2} symmetry of the gap.Comment: 4 pages, 3 figures, LaTeX2

    VanVleck Response Of A Two-Level System And Mesoscopic Orbital Magnetism Of Small Metals

    Full text link
    We evaluate the mean value of the van Vleck response of a two-level system with level spacing distribution and argue that it describes the orbital magnetism of small conducting particles.Comment: 6 page

    Curie Temperatures for Three-Dimensional Binary Ising Ferromagnets

    Full text link
    Using the Swendsen and Wang algorithm, high accuracy Monte Carlo simulations were performed to study the concentration dependence of the Curie temperature in binary, ferromagnetic Ising systems on the simple-cubic lattice. Our results are in good agreement with known mean-field like approaches. Based on former theoretical formulas we propose a new way of estimating the Curie temperature of these systems.Comment: nr. of pages:13, LATEX. Version 2.09, Scientific Report :02/1994 (Univ. of Bergen, Norway), 7 figures upon reques

    Spin fluctuations and ferromagnetic order in two-dimensional itinerant systems with Van Hove singularities

    Full text link
    The quasistatic approach is used to analyze the criterion of ferromagnetism for two-dimensional (2D) systems with the Fermi level near Van Hove (VH) singularities of the electron spectrum. It is shown that the spectrum of spin excitations (paramagnons) is positively defined when the interaction between electrons and paramagnons, determined by the Hubbard on-site repulsion U, is sufficiently large. Due to incommensurate spin fluctuations near the ferromagnetic quantum phase transition, the critical interaction Uc remains finite at VH filling and exceeds considerably its value obtained from the Stoner criterion. A comparison with the functional renormalization group results and mean-field approximation which yields a phase separation is also performed

    Ultrafast demagnetization in the sp-d model: a theoretical study

    Full text link
    We propose and analyze a theoretical model of ultrafast light-induced magnetization dynamics in systems of localized spins that are coupled to carriers' spins by sp-d exchange interaction. A prominent example of a class of materials falling into this category are ferromagnetic (III,Mn)V semiconductors, in which ultrafast demagnetization has been recently observed. In the proposed model light excitation heats up the population of carriers, taking it out of equilibrium with the localized spins. This triggers the process of energy and angular momentum exchange between the two spin systems, which lasts for the duration of the energy relaxation of the carriers. We derive the Master equation for the density matrix of a localized spin interacting with the hot carriers and couple it with a phenomenological treatment of the carrier dynamics. We develop a general theory within the sp-d model and we apply it to the ferromagnetic semiconductors, taking into account the valence band structure of these materials. We show that the fast spin relaxation of the carriers can sustain the flow of polarization between the localized and itinerant spins leading to significant demagnetization of the localized spin system, observed in (III,Mn)V materials.Comment: 15 pages, 8 figure

    Magnetic light

    Full text link
    In this paper we report on the observation of novel and highly unusual magnetic state of light. It appears that in small holes light quanta behave as small magnets so that light propagation through such holes may be affected by magnetic field. When arrays of such holes are made, magnetic light of the individual holes forms novel and highly unusual two-dimensional magnetic light material. Magnetic light may soon become a great new tool for quantum communication and computing.Comment: Submitted to Phys.Rev.Lett., 3 figure

    Ballistic and Diffuse Electron Transport in Nanocontacts of Magnetics

    Full text link
    The transition from the ballistic electron transport to the diffuse one is experimentally observed in the study of the magnetic phase transition in Ni nanocontacts with different sizes. It is shown that the voltage UCU_C needed for Joule heating of the near-contact region to the critical temperature does not depend on the contact size only in the diffuse mode. For the ballistic contact it increases with decrease in the nanocontact size. The reduction of the transport electron mean free path due to heating of NCs may result in change of the electron transport mode from ballistic to diffusive one.Comment: 7 pages, 2 figures accepted for the publication in JETPL (http://www.jetpletters.ac.ru). Will be published on 25 april 201

    On the line shape of the electrically detected ferromagnetic resonance

    Full text link
    This work reviews and examines two particular issues related with the new technique of electrical detection of ferromagnetic resonance (FMR). This powerful technique has been broadly applied for studying magnetization and spin dynamics over the past few years. The first issue is the relation and distinction between different mechanisms that give rise to a photovoltage via FMR in composite magnetic structures, and the second is the proper analysis of the FMR line shape, which remains the "Achilles heel" in interpreting experimental results, especially for either studying the spin pumping effect or quantifying the spin Hall angles via the electrically detected FMR.Comment: 14 pages, 9 figure
    corecore