537 research outputs found
Using a dual plasma process to produce cobalt--polypyrrole catalysts for the oxygen reduction reaction in fuel cells -- part I: characterisation of the catalytic activity and surface structure
A new dual plasma coating process to produce platinum-free catalysts for the
oxygen reduction reaction in a fuel cell is introduced. The catalysts thus
produced were analysed with various methods. Electrochemical characterisation
was carried out by cyclic voltammetry, rotating ring- and rotating ring-disk
electrode. The surface porosity of the different catalysts thus obtained was
characterised with the nitrogen gas adsorption technique and scanning electron
microscopy was used to determine the growth mechanisms of the films. It is
shown that catalytically active compounds can be produced with this dual plasma
process. Furthermore, the catalytic activity can be varied significantly by
changing the plasma process parameters. The amount of HO produced was
calculated and shows that a 2 electron mechanism is predominant. The plasma
coating mechanism does not significantly change the surface BET area and pore
size distribution of the carbon support used. Furthermore, scanning electron
microscopy pictures of the produced films are presented and show the preference
of columnar growth mechanisms. By using different carbons as the support it is
shown that there is a strong dependence of the catalytic activity that is
probably related to the chemical properties of the carbon
Similar temperature scale for valence changes in Kondo lattices with different Kondo temperatures
The Kondo model predicts that both the valence at low temperatures and its
temperature dependence scale with the characteristic energy T_K of the Kondo
interaction. Here, we study the evolution of the 4f occupancy with temperature
in a series of Yb Kondo lattices using resonant X-ray emission spectroscopy. In
agreement with simple theoretical models, we observe a scaling between the
valence at low temperature and T_K obtained from thermodynamic measurements. In
contrast, the temperature scale T_v at which the valence increases with
temperature is almost the same in all investigated materials while the Kondo
temperatures differ by almost four orders of magnitude. This observation is in
remarkable contradiction to both naive expectation and precise theoretical
predictions of the Kondo model, asking for further theoretical work in order to
explain our findings. Our data exclude the presence of a quantum critical
valence transition in YbRh2Si2
Photoemission study of the spin-density wave state in thin films of Cr
Angle-resolved photoemission (PE) was used to characterize the spin-density
wave (SDW) state in thin films of Cr grown on W(110). The PE data were analysed
using results of local spin density approximation layer-Korringa-Kohn-Rostoker
calculations. It is shown that the incommensurate SDW can be monitored and
important parameters of SDW-related interactions, such as coupling strength and
energy of collective magnetic excitations, can be determined from the
dispersion of the renormalized electronic bands close to the Fermi energy. The
developed approach can readily be applied to other SDW systems including
magnetic multilayer structures.Comment: 4 figure
Quasi-freestanding and single-atom thick layer of hexagonal boron nitride as a substrate for graphene synthesis
We demonstrate that freeing a single-atom thick layer of hexagonal boron
nitride (hbn) from tight chemical bonding to a Ni(111) thin film grown on a
W(110) substrate can be achieved by intercalation of Au atoms into the
interface. This process has been systematically investigated using
angle-resolved photoemission spectroscopy, X-ray photoemission and absorption
techniques. It has been demonstrated that the transition of the hbn layer from
the "rigid" into the "quasi-freestanding" state is accompanied by a change of
its lattice constant. Using chemical vapor deposition, graphene has been
successfully synthesized on the insulating, quasi-freestanding hbn monolayer.
We anticipate that the in situ synthesized weakly interacting graphene/hbn
double layered system could be further developed for technological applications
and may provide perspectives for further inquiry into the unusual electronic
properties of graphene.Comment: in print in Phys. Rev.
Using a dual plasma process to produce cobalt--polypyrrole catalysts for the oxygen reduction reaction in fuel cells -- part II: analysing the chemical structure of the films
The chemical structure of cobalt--polypyrrole -- produced by a dual plasma
process -- is analysed by means of X-ray photoelectron spectroscopy (XPS), near
edge X-ray absorption spectroscopy (NEXAFS), X-ray diffraction (XRD),
energy-dispersive X-Ray spectroscopy (EDX) and extended x-ray absorption
spectroscopy (EXAFS).It is shown that only nanoparticles of a size of 3\,nm
with the low temperature crystal structure of cobalt are present within the
compound. Besides that, cobalt--nitrogen and carbon--oxygen structures are
observed. Furthermore, more and more cobalt--nitrogen structures are produced
when increasing the magnetron power. Linking the information on the chemical
structure to the results about the catalytic activity of the films -- which are
presented in part I of this contribution -- it is concluded that the
cobalt--nitrogen structures are the probable catalytically active sites. The
cobalt--nitrogen bond length is calculated as 2.09\,\AA\ and the
carbon--nitrogen bond length as 1.38\,\AA
High-resolution resonant inelastic soft X-ray scattering as a probe of the crystal electrical field in lanthanides demonstrated for the case of CeRh2Si2
The magnetic properties of rare earth compounds are usually well captured by
assuming a fully localized f shell and only considering the Hund's rule ground
state multiplet split by a crystal electrical field (CEF). Currently, the
standard technique for probing CEF excitations in lanthanides is inelastic
neutron scattering. Here we show that with the recent leap in energy
resolution, resonant inelastic soft X-ray scattering has become a serious
alternative for looking at CEF excitations with some distinct advantages
compared to INS. As an example we study the CEF scheme in CeRh2Si2, a system
that has been intensely studied for more than two decades now but for which no
consensus has been reached yet as to its CEF scheme. We used two new features
that have only become available very recently in RIXS, high energy resolution
of about 30 meV as well as polarization analysis in the scattered beam, to find
a unique CEF description for CeRh2Si2. The result agrees well with previous INS
and magnetic susceptibility measurements. Due to its strong resonant character,
RIXS is applicable to very small samples, presents very high cross sections for
all lanthanides, and further benefits from the very weak coupling to phonon
excitation. The rapid progress in energy resolution of RIXS spectrometers is
making this technique increasingly attractive for the investigation of the CEF
scheme in lanthanides
Wave-vector dependent intensity variations of the Kondo peak in photoemission from CePd
Strong angle-dependent intensity variations of the Fermi-level feature are
observed in 4d - 4f resonant photoemission spectra of CePd(111), that
reveal the periodicity of the lattice and largest intensity close to the Gamma
points of the surface Brillouin zone. In the framework of a simplified periodic
Anderson model the phenomena may quantitatively be described by a wave-vector
dependence of the electron hopping matrix elements caused by Fermi-level
crossings of non-4f-derived energy bands
- …
