348 research outputs found

    Sommerfeld's quantum condition of action and the spectra of Schwarzschild black hole

    Full text link
    If the situation of quantum gravity nowadays is nearly the same as that of the quantum mechanics in it's early time of Bohr and Sommerfeld, then a first step study of the quantum gravity from Sommerfeld's quantum condition of action might be helpful. In this short paper the spectra of Schwarzschild black hole(SBH) in quasi-classical approach of quantum mechanics is given. We find the quantum of area, the quantum of entropy and the Hawking evaporation will cease as the black hole reaches its ground state.Comment: 7 pages, no figures, submitted to Classical and Quantum Gravit

    Towards sustainable agriculture: fossil-free ammonia

    Get PDF
    Citation: Pfromm, P. H. (2017). Towards sustainable agriculture: Fossil-free ammonia. Journal of Renewable and Sustainable Energy, 9(3), 034702. https://doi.org/10.1063/1.4985090About 40% of our food would not exist without synthetic ammonia (NH3) for fertilization. Yet, NH3 production is energy intensive. About 2% of the world's commercial energy is consumed as fossil fuels for NH3 synthesis based on the century-old Haber-Bosch (H.-B.) process. The state of the art and the opportunities for reducing the fossil energy footprint of industrial H.-B. NH3 synthesis are discussed. It is shown that even a hypothetical utterly revolutionary H.-B. catalyst could not significantly reduce the energy demand of H.-B. NH3 as this is governed by hydrogen production. Renewable energy-enabled, fossil-free NH3 synthesis is then evaluated based on the exceptional and continuing cost decline of renewable electricity. H.-B. syngas (H2, N2) is assumed to be produced by electrolysis and cryogenic air separation, and then supplied to an existing H.-B. synthesis loop. Fossil-free NH3 could be produced for energy costs of about $232 per tonne NH3 without claiming any economic benefits for the avoidance of about 1.5 tonnes of CO2 released per tonne NH3 compared to the most efficient H.-B. implementations. Research into alternatives to the H.-B. process might be best targeted at emerging markets with currently little NH3 synthesis capacity but significant future population growth such as Africa. Reduced capital intensity, good scale-down economics, tolerance for process upsets and contamination, and intermittent operability are some desirable characteristics of NH3 synthesis in less developed markets, and for stranded resources. Processes that are fundamentally different from H.-B. may come to the fore under these specific boundary conditions

    AMPA receptor GluA2 subunit defects are a cause of neurodevelopmental disorders.

    Get PDF
    AMPA receptors (AMPARs) are tetrameric ligand-gated channels made up of combinations of GluA1-4 subunits encoded by GRIA1-4 genes. GluA2 has an especially important role because, following post-transcriptional editing at the Q607 site, it renders heteromultimeric AMPARs Ca2+-impermeable, with a linear relationship between current and trans-membrane voltage. Here, we report heterozygous de novo GRIA2 mutations in 28 unrelated patients with intellectual disability (ID) and neurodevelopmental abnormalities including autism spectrum disorder (ASD), Rett syndrome-like features, and seizures or developmental epileptic encephalopathy (DEE). In functional expression studies, mutations lead to a decrease in agonist-evoked current mediated by mutant subunits compared to wild-type channels. When GluA2 subunits are co-expressed with GluA1, most GRIA2 mutations cause a decreased current amplitude and some also affect voltage rectification. Our results show that de-novo variants in GRIA2 can cause neurodevelopmental disorders, complementing evidence that other genetic causes of ID, ASD and DEE also disrupt glutamatergic synaptic transmission

    Advanced Virgo Plus. Future perspectives

    Get PDF
    While completing the commissioning phase to prepare the Virgo interferometer for the next joint Observation Run (O4), the Virgo collaboration is also finalizing the design of the next upgrades to the detector to be employed in the following Observation Run (O5). The major upgrade will concern decreasing the thermal noise limit, which will imply using very large test masses and increased laser beam size. But this will not be the only upgrade to be implemented in the break between the O4 and O5 observation runs to increase the Virgo detector strain sensitivity. The paper will cover the challenges linked to this upgrade and implications on the detector’s reach and observational potential, reflecting the talk given at 12th Cosmic Ray International Seminar - CRIS 2022 held in September 2022 in Napoli

    The Electronics and Data Acquisition System of the DarkSide Dark Matter Search

    Full text link
    It is generally inferred from astronomical measurements that Dark Matter (DM) comprises approximately 27\% of the energy-density of the universe. If DM is a subatomic particle, a possible candidate is a Weakly Interacting Massive Particle (WIMP), and the DarkSide-50 (DS) experiment is a direct search for evidence of WIMP-nuclear collisions. DS is located underground at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy, and consists of three active, embedded components; an outer water veto (CTF), a liquid scintillator veto (LSV), and a liquid argon (LAr) time projection chamber (TPC). This paper describes the data acquisition and electronic systems of the DS detectors, designed to detect the residual ionization from such collisions

    Higher harmonic anisotropic flow measurements of charged particles in Pb-Pb collisions at 2.76 TeV

    Get PDF
    We report on the first measurement of the triangular v3v_3, quadrangular v4v_4, and pentagonal v5v_5 charged particle flow in Pb-Pb collisions at 2.76 TeV measured with the ALICE detector at the CERN Large Hadron Collider. We show that the triangular flow can be described in terms of the initial spatial anisotropy and its fluctuations, which provides strong constraints on its origin. In the most central events, where the elliptic flow v2v_2 and v3v_3 have similar magnitude, a double peaked structure in the two-particle azimuthal correlations is observed, which is often interpreted as a Mach cone response to fast partons. We show that this structure can be naturally explained from the measured anisotropic flow Fourier coefficients.Comment: 10 pages, 4 figures, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/387

    Immune-related genetic enrichment in frontotemporal dementia: An analysis of genome-wide association studies

    Get PDF

    Physics of the HL-LHC, and Perspectives at the HE-LHC

    Get PDF
    corecore