4,245 research outputs found
Silicon nanoparticles and interstellar extinction
To examine a recently proposed hypothesis that silicon nanoparticles are the
source of extended red emission (ERE) in the interstellar medium, we performed
a detailed modeling of the mean Galactic extinction in the presence of silicon
nanoparticles. For this goal we used the appropriate optical constants of
nanosized Si, essentially different from those of bulk Si due to quantum
confinement. It was found that a dust mixture of silicon nanoparticles, bare
graphite grains, silicate core-organic refractory mantle grains and three-layer
silicate-water ice-organic refractory grains works well in explaining the
extinction and, in addition, results in the acceptable fractions of UV/visible
photons absorbed by silicon nanoparticles: 0.071-0.081. Since these fractions
barely agree with the fraction of UV/visible photons needed to excite the
observed ERE, we conclude that the intrinsic photon conversion efficiency of
the photoluminescence by silicon nanoparticles must be near 100%, if they are
the source of the ERE.Comment: Latex2e, uses emulateapj.sty (included), multicol.sty, epsf.sty, 6
pages, 3 figures (8 Postscript files), accepted for publication in ApJ
Letters, complete Postscript file is also available at
http://physics.technion.ac.il/~zubko/eb.html#SNP
X-ray Halos and Large Grains in the Diffuse Interstellar Medium
Recent observations with dust detectors on board the interplanetary
spacecraft Ulysses and Galileo have recorded a substantial flux of large
interstellar grains with radii between 0.25 and 2.0 mu entering the solar
system from the local interstellar cloud. The most commonly used interstellar
grain size distribution is characterized by a a^-3.5 power law in grain radii
a, and extends to a maximum grain radius of 0.25 mu. The extension of the
interstellar grain size distribution to such large radii will have a major
effect on the median grain size, and on the amount of mass needed to be tied up
in dust for a given visual optical depth. It is therefore important to
investigate whether this population of larger dust particles prevails in the
general interstellar medium, or if it is merely a local phenomenon. The
presence of large interstellar grains can be mainly inferred from their effect
on the intensity and radial profiles of scattering halos around X-ray sources.
In this paper we examine the grain size distribution that gives rise to the
X-ray halo around Nova Cygni 1992. The results of our study confirm the need to
extend the interstellar grain size distribution in the direction of this source
to and possibly beyond 2.0 mu. The model that gives the best fit to the halo
data is characterized by: (1) a grain size distribution that follows an a^-3.5
power law up to 0.50 mu, followed by an a^-4.0 extension from 0.50 mu to 2.0
mu; and (2) silicate and graphite (carbon) dust-to-gas mass ratios of 0.0044
and 0.0022, respectively, consistent with solar abundances constraints.
Additional observations of X-ray halos probing other spatial directions are
badly needed to test the general validity of this result.Comment: 17 pages, incl. 1 figure, accepted for publ. by ApJ Letter
Human Exploration of Mars: Preliminary Lists of Crew Tasks
This is a preliminary report of ongoing research that has identified 1,125 tasks that are likely to be performed during initial human expeditions to Mars. The purpose of the report is to facilitate immediate access to the task inventory by researchers whose efforts might benefit from concrete examples of the work that will likely be performed by the first human explorers of Mars and the tasks for which crew members must be prepared to perform in response to emergencies. The research that led to the task lists is being conducted under Cooperative Agreement NNX15AW34G / NNX16AQ86G for the Human Factors and Behavioral Performance Element, Human Performance Program, NASAs Johnson Space Center. The study is ongoing and will conclude with a final report that documents all research activities and presents the results of task and ability analyses and the implications of study results to crew size and composition, personnel selection and training, and design of equipment and procedures. The research addresses the Risk of Inadequate Mission, Process, and Task Design and the Risk of Performance Errors Due to Training Deficiencies by identifying the work that will be performed during an expedition to Mars and the abilities, skills, and knowledge that will be required of crew members. The study began by developing the comprehensive inventory of 1,125 tasks that are likely to be performed during the 12 phases of initial human expeditions to Mars, from launch to landing 30 months later. This full-mission task inventory was generated by a comprehensive review of documentation and concepts of operations with the understanding that plans and tasks might change in response to continuing technological development. Note: This interim report includes no discussion of analyses and has been prepared solely to facilitate dissemination of the task lists to others whose research might benefit from detailed information about the work and other activities that are likely to be performed during the human exploration of Mars
Critical Behaviour of Non-Equilibrium Phase Transitions to Magnetically Ordered States
We describe non-equilibrium phase transitions in arrays of dynamical systems
with cubic nonlinearity driven by multiplicative Gaussian white noise.
Depending on the sign of the spatial coupling we observe transitions to
ferromagnetic or antiferromagnetic ordered states. We discuss the phase
diagram, the order of the transitions, and the critical behaviour. For global
coupling we show analytically that the critical exponent of the magnetization
exhibits a transition from the value 1/2 to a non-universal behaviour depending
on the ratio of noise strength to the magnitude of the spatial coupling.Comment: 4 pages, 5 figure
Bostonia. Volume 4
Founded in 1900, Bostonia magazine is Boston University's main alumni publication, which covers alumni and student life, as well as university activities, events, and programs
Carriage of Methicillin-Resistant Staphylococcus Aureus at Hospital Admission
Abstract Objectives: To measure the prevalence of, and to establish predictors for, the nasal carriage of methicillin-resistant Staphylococcus aureus (MRSA) at hospital admission. To evaluate mannitol-salt agar with oxacillin for the simultaneous detection and identification of MRSA from nasal swabs. Design: Three-month prospective case-control survey, with data collected from interviews and computerized databases. The criterion standard for MRSA detection was culture on Mueller-Hinton agar with oxacillin 6 μg/mL (National Committee for Clinical Laboratory Standards method). Setting: 320-bed tertiary-care hospital. Patients: 387 patients screened within 24 hours after admission, including 10 MRSA carriers (cases), 291 patients with no S aureus, and 86 patients with methicillin-susceptible S aureus. Results: The prevalence of MRSA nasal carriage was 2.6%, whereas the prevalence of carriage was 3.1% when both nasal and wound cultures were performed. The significant predictors of carriage were a prior detection of MRSA, open wounds, diabetes mellitus, treatments by injection, prior nursing home stays, visits at home by a nurse, and prior antibiotic treatments. Cases had stayed for longer periods in hospitals and had received longer antibiotic treatments within a year. Eighty patients (including the 10 cases) had diabetes, had been exposed to healthcare facilities within a year, and had antibiotics within 6 months. The sensitivity and negative predictive value of nasal swabs on mannitol-salt agar with oxacillin were 60% and 71%, respectively. Conclusion: MRSA carriage on admission to the hospital may be an increasing and underestimated problem. Further studies are needed to develop and validate a sensitive and specific prediction rul
The Photophysics of the Carrier of Extended Red Emission
Interstellar dust contains a component which reveals its presence by emitting
a broad, unstructured band of light in the 540 to 950 nm wavelength range,
referred to as Extended Red Emission (ERE). The presence of interstellar dust
and ultraviolet photons are two necessary conditions for ERE to occur. This is
the basis for suggestions which attribute ERE to an interstellar dust component
capable of photoluminescence. In this study, we have collected all published
ERE observations with absolute-calibrated spectra for interstellar
environments, where the density of ultraviolet photons can be estimated
reliably. In each case, we determined the band-integrated ERE intensity, the
wavelength of peak emission in the ERE band, and the efficiency with which
absorbed ultraviolet photons are contributing to the ERE. The data show that
radiation is not only driving the ERE, as expected for a photoluminescence
process, but is modifying the ERE carrier as manifested by a systematic
increase in the ERE band's peak wavelength and a general decrease in the photon
conversion efficiency with increasing densities of the prevailing exciting
radiation. The overall spectral characteristics of the ERE and the observed
high quantum efficiency of the ERE process are currently best matched by the
recently proposed silicon nanoparticle (SNP) model. Using the experimentally
established fact that ionization of semiconductor nanoparticles quenches their
photoluminescence, we proceeded to test the SNP model by developing a
quantitative model for the excitation and ionization equilibrium of SNPs under
interstellar conditions for a wide range of radiation field densities.Comment: 42 p., incl. 8 fig. Accepted for publication by Ap
The Ammount of Interstellar Carbon Locked in Solid Hydrogenated Amorphous Carbon
We review the literature and present new experimental data to determine the
amount of carbon likely to be locked in form of solid hydrogenated amorphous
carbon (HAC) grains. We conclude on the basis of a thorough analysis of the
intrinsic strength of the C-H stretching band at 3.4 micron that between 10 and
80 ppM H of carbon is in the form of HAC grains. We show that it is necessary
to know the level of hydrogenation (H/C) of the interstellar HAC to determine
more precisely the amount of carbon it ties up. We present optical constants,
photoluminescence spectroscopy, and IR absorption spectroscopy for a particular
HAC sample that is shown to have a 3.4 micron absorption feature that is
quantatively consistent with that observed in the diffuse interstellar medium.Comment: This paper is 14 pages long with 5 figures and will appear in the 1
December 1999 issue of Ap
Ultraviolet Imaging of the Globular Cluster 47 Tucanae
We have used the Ultraviolet Imaging Telescope to obtain deep far-UV (1620
Angstrom), 40' diameter images of the prototypical metal-rich globular cluster
47 Tucanae. We find a population of about 20 hot (Teff > 9000 K) objects near
or above the predicted UV luminosity of the hot horizontal branch (HB) and
lying within two half-light radii of the cluster center. We believe these are
normal hot HB or post-HB objects rather than interacting binaries or blue
stragglers. IUE spectra of two are consistent with post-HB phases. These
observations, and recent HST photometry of two other metal-rich clusters,
demonstrate that populations with rich, cool HB's can nonetheless produce hot
HB and post-HB stars. The cluster center also contains an unusual diffuse
far-UV source which is more extended than its V-band light. It is possible that
this is associated with an intracluster medium, for which there was earlier
infrared and X-ray evidence, and is produced by C IV emission or scattered
light from grains.Comment: 13 pages AASLaTeX including one postscript figure and one bitmapped
image, JPEG format. Submitted to the Astronomical Jorunal. Full Postscript
version available at http://www.astro.virginia.edu/~bd4r
- …
