258 research outputs found

    Sentinel node staging for breast cancer: Intraoperative molecular pathology overcomes conventional histologic sampling errors

    Get PDF
    BACKGROUND: When sentinel node dissection reveals breast cancer metastasis, completion axillary lymph node dissection is ideally performed during the same operation. Intraoperative histologic techniques have low and variable sensitivity. A new intraoperative molecular assay (GeneSearch BLN Assay; Veridex, LLC, Warren, NJ) was evaluated to determine its efficiency in identifying significant sentinel lymph node metastases (\u3e.2 mm). METHODS: Positive or negative BLN Assay results generated from fresh 2-mm node slabs were compared with results from conventional histologic evaluation of adjacent fixed tissue slabs. RESULTS: In a prospective study of 416 patients at 11 clinical sites, the assay detected 98% of metastases \u3e2 mm and 88% of metastasis greater \u3e.2 mm, results superior to frozen section. Micrometastases were less frequently detected (57%) and assay positive results in nodes found negative by histology were rare (4%). CONCLUSIONS: The BLN Assay is properly calibrated for use as a stand alone intraoperative molecular test

    People RDC national pathfinder project: exploring federated learning tools, opportunities and resource requirements

    Get PDF
    Pathfinder: Exploring Federated Learning Tools, Opportunities and Resource Requirements In the fourth quarter of 2023, the ARDC reached out to the ACDN, who had previously collaborated on a federated learning project with the ARDC, to jointly develop a pathfinder project. It sought to: explore the uses, needs and challenges of federated learning in the context of sensitive health-related data, while ensuring the maintenance of privacy and confidentiality identify and establish a collaborative network among similar research groups develop suitable demonstrator artefacts to centre the dialogues around them. This report presents the findings of this project, providing an overview of requirements and current experiences with federated learning. It covers: a comparison of key federated learning tools available and infrastructure requirements to support federated learning with the goal of establishing a suitable blueprint for a federated learning architecture that can be effectively implemented consideration of use cases that could become cardinal edge cases for the development of a national infrastructure, including discussion of case study of designs and deployments that are available to or informing national infrastructure healthcare-focused conclusions and recommendations to the ARDC on infrastructure and other support required to enable and encourage use of federated learning by Australian research groups. Citation Holloway L, Anees A, Al Mouiee D, Uddin A, Vafaee F, Haidar A, Gorse D, Sullivan R, Wang D, Bharathy G (2024). People RDC National Pathfinder Project: Exploring Federated Learning Tools, Opportunities and Resource Requirements. Report to ARDC, Australian Research Data Commons. DOI: 10.5281/zenodo.1383145

    Increased epigenetic age in normal breast tissue from luminal breast cancer patients

    Get PDF
    BACKGROUND: Age is one of the most important risk factors for developing breast cancer. However, age-related changes in normal breast tissue that potentially lead to breast cancer are incompletely understood. Quantifying tissue-level DNA methylation can contribute to understanding these processes. We hypothesized that occurrence of breast cancer should be associated with an acceleration of epigenetic aging in normal breast tissue. RESULTS: Ninety-six normal breast tissue samples were obtained from 88 subjects (breast cancer = 35 subjects/40 samples, unaffected = 53 subjects/53 samples). Normal tissue samples from breast cancer patients were obtained from distant non-tumor sites of primary mastectomy specimens, while samples from unaffected women were obtained from the Komen Tissue Bank (n = 25) and from non-cancer-related breast surgery specimens (n = 28). Patients were further stratified into four cohorts: age < 50 years with and without breast cancer and age ≥ 50 with and without breast cancer. The Illumina HumanMethylation450k BeadChip microarray was used to generate methylation profiles from extracted DNA samples. Data was analyzed using the "Epigenetic Clock," a published biomarker of aging based on a defined set of 353 CpGs in the human genome. The resulting age estimate, DNA methylation age, was related to chronological age and to breast cancer status. The DNAmAge of normal breast tissue was strongly correlated with chronological age (r = 0.712, p < 0.001). Compared to unaffected peers, breast cancer patients exhibited significant age acceleration in their normal breast tissue (p = 0.002). Multivariate analysis revealed that epigenetic age acceleration in the normal breast tissue of subjects with cancer remained significant after adjusting for clinical and demographic variables. Additionally, smoking was found to be positively correlated with epigenetic aging in normal breast tissue (p = 0.012). CONCLUSIONS: Women with luminal breast cancer exhibit significant epigenetic age acceleration in normal adjacent breast tissue, which is consistent with an analogous finding in malignant breast tissue. Smoking is also associated with epigenetic age acceleration in normal breast tissue. Further studies are needed to determine whether epigenetic age acceleration in normal breast tissue is predictive of incident breast cancer and whether this mediates the risk of chronological age on breast cancer risk

    a subanalysis of causes and risk factors from the Global Burden of Disease Study 2021

    Get PDF
    Funding Information: The research reported in this publication was funded by the Gates Foundation. Publisher Copyright: © 2025 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 licenseBackground: Decades of steady improvements in life expectancy in Europe slowed down from around 2011, well before the COVID-19 pandemic, for reasons which remain disputed. We aimed to assess how changes in risk factors and cause-specific death rates in different European countries related to changes in life expectancy in those countries before and during the COVID-19 pandemic. Methods: We used data and methods from the Global Burden of Diseases, Injuries, and Risk Factors Study 2021 to compare changes in life expectancy at birth, causes of death, and population exposure to risk factors in 16 European Economic Area countries (Austria, Belgium, Denmark, Finland, France, Germany, Greece, Iceland, Ireland, Italy, Luxembourg, the Netherlands, Norway, Portugal, Spain, and Sweden) and the four UK nations (England, Northern Ireland, Scotland, and Wales) for three time periods: 1990–2011, 2011–19, and 2019–21. Changes in life expectancy and causes of death were estimated with an established life expectancy cause-specific decomposition method, and compared with summary exposure values of risk factors for the major causes of death influencing life expectancy. Findings: All countries showed mean annual improvements in life expectancy in both 1990–2011 (overall mean 0·23 years [95% uncertainty interval [UI] 0·23 to 0·24]) and 2011–19 (overall mean 0·15 years [0·13 to 0·16]). The rate of improvement was lower in 2011–19 than in 1990–2011 in all countries except for Norway, where the mean annual increase in life expectancy rose from 0·21 years (95% UI 0·20 to 0·22) in 1990–2011 to 0·23 years (0·21 to 0·26) in 2011–19 (difference of 0·03 years). In other countries, the difference in mean annual improvement between these periods ranged from –0·01 years in Iceland (0·19 years [95% UI 0·16 to 0·21] vs 0·18 years [0·09 to 0·26]), to –0·18 years in England (0·25 years [0·24 to 0·25] vs 0·07 years [0·06 to 0·08]). In 2019–21, there was an overall decrease in mean annual life expectancy across all countries (overall mean –0·18 years [95% UI –0·22 to –0·13]), with all countries having an absolute fall in life expectancy except for Ireland, Iceland, Sweden, Norway, and Denmark, which showed marginal improvement in life expectancy, and Belgium, which showed no change in life expectancy. Across countries, the causes of death responsible for the largest improvements in life expectancy from 1990 to 2011 were cardiovascular diseases and neoplasms. Deaths from cardiovascular diseases were the primary driver of reductions in life expectancy improvements during 2011–19, and deaths from respiratory infections and other COVID-19 pandemic-related outcomes were responsible for the decreases in life expectancy during 2019–21. Deaths from cardiovascular diseases and neoplasms in 2019 were attributable to high systolic blood pressure, dietary risks, tobacco smoke, high LDL cholesterol, high BMI, occupational risks, high alcohol use, and other risks including low physical activity. Exposure to these major risk factors differed by country, with trends of increasing exposure to high BMI and decreasing exposure to tobacco smoke observed in all countries during 1990–2021. Interpretation: The countries that best maintained improvements in life expectancy after 2011 (Norway, Iceland, Belgium, Denmark, and Sweden) did so through better maintenance of reductions in mortality from cardiovascular diseases and neoplasms, underpinned by decreased exposures to major risks, possibly mitigated by government policies. The continued improvements in life expectancy in five countries during 2019–21 indicate that these countries were better prepared to withstand the COVID-19 pandemic. By contrast, countries with the greatest slowdown in life expectancy improvements after 2011 went on to have some of the largest decreases in life expectancy in 2019–21. These findings suggest that government policies that improve population health also build resilience to future shocks. Such policies include reducing population exposure to major upstream risks for cardiovascular diseases and neoplasms, such as harmful diets and low physical activity, tackling the commercial determinants of poor health, and ensuring access to affordable health services. Funding: Gates Foundation.publishersversionpublishe

    Interaction of atopy and smoking on respiratory effects of occupational dust exposure: a general population-based study

    Get PDF
    BACKGROUND: For individual exposures, effect modification by atopy or smoking has been reported on the occurrence of occupational airway disease. It is unclear if effect modification can be studied in a general population by an aggregated exposure measure. Assess relationship between airway obstruction and occupational exposure using a job-exposure-matrix (JEM) classifying jobs into 3 broad types of exposure, and test for effect modification by atopy, and smoking. METHODS: Data from 1,906 subjects were analyzed, all participants of the European Community Respiratory Health Survey. Job titles were categorized by an a priori constructed job exposure matrix into three classes of exposure to respectively organic dust, mineral dust, and gases/ fumes. Relationships were assessed for 'current wheeze', bronchial hyperresponsiveness (BHR), 'current asthma' (wheeze+BHR), and 'chronic bronchitis' (morning phlegm or morning cough), and lung function. RESULTS: Subjects with organic dust exposure in their work environment more frequently had 'current asthma' (OR 1.48, 95% C.I. 0.95;2.30), and a lower FEV(1 )(-59 mL, 95% C.I. -114;-4). The relationship was only present in asthmatic workers, and their risk was four-fold greater than in subjects with either atopy or exposure alone. Mineral dust exposure was associated with 'chronic bronchitis' (OR 2.22, 95% C.I. 1.16;4.23) and a lower FEV(1)/FVC ratio (-1.1%, 95% C.I. -1.8;-0.3). We observed an excess risk in smokers, greater than the separate effects of smoking or mineral dust exposure together. CONCLUSION: Occupational exposure to organic dust is associated with an increased risk of asthma, particularly in atopics. Chronic bronchitis occurs more frequently among individuals exposed to mineral dust, and smoking doubles this risk

    Proceedings of the Sixth International Workshop on Web Caching and Content Distribution

    Full text link
    OVERVIEW The International Web Content Caching and Distribution Workshop (WCW) is a premiere technical meeting for researchers and practitioners interested in all aspects of content caching, distribution and delivery on the Internet. The 2001 WCW meeting was held on the Boston University Campus. Building on the successes of the five previous WCW meetings, WCW01 featured a strong technical program and record participation from leading researchers and practitioners in the field. This report includes all the technical papers presented at WCW'01. Note: Proceedings of WCW'01 are published by Elsevier. Hardcopies of these proceedings can be purchased through the workshop organizers. As a service to the community, electronic copies of all WCW'01 papers are accessible through Technical Report BUCS‐TR‐2001‐017, available from the Boston University Computer Science Technical Report Archives at http://www.cs.bu.edu/techreps. [Ed.note: URL outdated. Use http://www.bu.edu/cs/research/technical-reports/ or http://hdl.handle.net/2144/1455 in this repository to access the reports.]Cisco Systems; InfoLibria; Measurement Factory Inc; Voler

    Redefining diagnostic lesional status in temporal lobe epilepsy with artificial intelligence.

    Get PDF
    Despite decades of advancements in diagnostic MRI, 30-50% of temporal lobe epilepsy (TLE) patients remain categorized as "non-lesional" (i.e., MRI negative or MRI-) based on visual assessment by human experts. MRI- patients face diagnostic uncertainty and significant delays in treatment planning. Quantitative MRI studies have demonstrated that MRI- patients often exhibit a TLE-specific pattern of temporal and limbic atrophy that may be too subtle for the human eye to detect. This signature pattern could be successfully translated into clinical use via artificial intelligence (AI) advances in computer-aided MRI interpretation, thereby improving the detection of brain "lesional" patterns associated with TLE. Here, we tested this hypothesis by employing a three-dimensional convolutional neural network (3D CNN) applied to a dataset of 1,178 scans from 12 different centers. 3D CNN was able to differentiate TLE from healthy controls with high accuracy (85.9% ± 2.8), significantly outperforming support vector machines based on hippocampal (74.4% ± 2.6) and whole-brain (78.3% ± 3.3) volumes. Our analysis subsequently focused on a subset of patients who achieved sustained seizure freedom post-surgery as a gold standard for confirming TLE. Importantly, MRI- patients from this cohort were accurately identified as TLE 82.7% ± 0.9 of the time, an encouraging finding since clinically these were all patients considered to be MRI- (i.e., not radiographically different than controls). The saliency maps from the CNN revealed that limbic structures, particularly medial temporal, cingulate, and orbitofrontal areas, were most influential in classification, confirming the importance of the well-established TLE signature atrophy pattern for diagnosis. Indeed, the saliency maps were similar in MRI+ and MRI- TLE groups, suggesting that even when humans cannot distinguish more subtle levels of atrophy, these MRI- patients are on the same continuum common across all TLE patients. As such, AI can identify TLE lesional patterns and AI-aided diagnosis has the potential to greatly enhance the neuroimaging diagnosis of TLE and redefine the concept of "lesional" TLE

    Early incidence of occupational asthma among young bakers, pastry-makers and hairdressers: design of a retrospective cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Occupational exposures are thought to be responsible for 10-15% of new-onset asthma cases in adults, with disparities across sectors. Because most of the data are derived from registries and cross-sectional studies, little is known about incidence of occupational asthma (OA) during the first years after inception of exposure. This paper describes the design of a study that focuses on this early asthma onset period among young workers in the bakery, pastry making and hairdressing sectors in order to assess early incidence of OA in these "at risk" occupations according to exposure duration, and to identify risk factors of OA incidence.</p> <p>Methods/Design</p> <p>The study population is composed of subjects who graduated between 2001 and 2006 in these sectors where they experience exposure to organic or inorganic allergenic or irritant compounds (with an objective of 150 subjects by year) and 250 young workers with no specific occupational exposure. A phone interview focusing on respiratory and 'Ear-Nose-Throat' (ENT) work-related symptoms screen subjects considered as "possibly OA cases". Subjects are invited to participate in a medical visit to complete clinical and lung function investigations, including fractional exhaled nitric oxide (FE<sub>NO</sub>) and carbon monoxide (CO) measurements, and to collect blood samples for IgE (Immunoglobulin E) measurements (total IgE and IgE for work-related and common allergens). Markers of oxidative stress and genetic polymorphisms exploration are also assessed. A random sample of 200 "non-cases" (controls) is also visited, following a nested case-control design.</p> <p>Discussion</p> <p>This study may allow to describ a latent period between inception of exposure and the rise of the prevalence of asthma symptoms, an information that would be useful for the prevention of OA. Such a time frame would be suited for conducting screening campaigns of this emergent asthma at a stage when occupational hygiene measures and adapted therapeutic interventions might be effective.</p> <p>Trial registration</p> <p>Clinical trial registration number is NCT01096537.</p
    corecore