1,616 research outputs found
Efficacy of different antifouling treatments for seawater cooling systems
In an industrial seawater cooling system, the effects of three different antifouling treatments, viz. sodium
hypochlorite (NaClO), aliphatic amines (Mexel1432) and UV radiation, on the characteristics of the fouling formed
were evaluated. For this study a portable pilot plant, as a side-stream monitoring system and seawater cooling
system, was employed. The pilot plant simulated a power plant steam condenser, having four titanium tubes under
different treatment patterns, where fouling progression could be monitored. The nature of the fouling obtained was
chiefly inorganic, showing a clear dependence on the antifouling treatment employed. After 72 days the tubes under
treatment showed a reduction in the heat transfer resistance (R) of around 70% for NaClO, 48% for aliphatic
amines and 55% for UV, with respect to the untreated tube. The use of a logistic model was very useful for
predicting the fouling progression and the maximum asymptotic value of the increment in the heat transfer
resistance (DRmax). The apparent thermal conductivity (l) of the fouling layer showed a direct relationship with the
percentage of organic matter in the collected fouling. The characteristics and mode of action of the different
treatments used led to fouling with diverse physicochemical properties
Anaerobic digestion of whole-crop winter wheat silage for renewable energy production
With biogas production expanding across Europe in response to renewable energy incentives, a wider variety of crops need to be considered as feedstock. Maize, the most commonly used crop at present, is not ideal in cooler, wetter regions, where higher energy yields per hectare might be achieved with other cereals. Winter wheat is a possible candidate because, under these conditions, it has a good biomass yield, can be ensiled, and can be used as a whole crop material. The results showed that, when harvested at the medium milk stage, the specific methane yield was 0.32 m3 CH4 kg–1 volatile solids added, equal to 73% of the measured calorific value. Using crop yield values for the north of England, a net energy yield of 146–155 GJ ha–1 year–1 could be achieved after taking into account both direct and indirect energy consumption in cultivation, processing through anaerobic digestion, and spreading digestate back to the land. The process showed some limitations, however: the relatively low density of the substrate made it difficult to mix the digester, and there was a buildup of soluble chemical oxygen demand, which represented a loss in methane potential and may also have led to biofoaming. The high nitrogen content of the wheat initially caused problems, but these could be overcome by acclimatization. A combination of these factors is likely to limit the loading that can be applied to the digester when using winter wheat as a substrat
Nitrogen and phosphorus loads to temperate seepage lakes associated with allochthonous dissolved organic carbon loads
Terrestrial loads of dissolved organic matter (DOM) have increased in recent years in many north temperate lakes. While much of the focus on the “browning” phenomena has been on its consequences for carbon cycling, much less is known about how it influences nutrient loading to lakes. We characterize potential loads of nitrogen and phosphorus to seepage lakes in northern Wisconsin, USA, based on a laboratory soil leaching experiment and a model that includes landscape cover and watershed area. In these seepage lakes, nutrient concentrations are positively correlated with dissolved organic carbon concentrations (nitrogen: r = 0.68, phosphorus: r = 0.54). Using long‐term records of browning, we found that dissolved organic matter‐associated nutrient loadings may have resulted in substantial increases in nitrogen and phosphorus in seepage lakes and could account for currently observed nutrient concentrations in the lake. “Silent” nutrient loadings to brown‐water lakes may lead to future water‐quality concerns. PLAIN LANGUAGE SUMMARY: The color of many temperate lakes is changing; some lakes are becoming more darkly stained brown. The tea‐colored stain is due to dissolved organic matter from the surrounding landscape. Much of the research related to the causes and consequences of increased staining, or “brownification,” relate to its connection to the carbon cycle. However, by examining long‐term lake chemical records, analyzing the properties of the organic compounds, and modeling potential flows of the compounds, we find that carbon is not the only element that is influenced by browning. Nitrogen and phosphorus, two nutrients important to growth of organisms at the base of the food web, may also be increasing in lakes due to brownification."Funding for this research was supported by the Northern Research Station and the Chequamegon-Nicolet National Forest (CNNF) of the United States Department of Agriculture (USDA) Forest Service and a National Science Foundation (NSF) grant to the University of Wisconsin-Madison to support the North Temperate Lakes Long-Term Ecological Research (NTLLTER) Site (DEB-#1440297)."https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018GL07721
Effects of external nutrient sources and extreme weather events on the nutrient budget of a Southern European coastal lagoon
The seasonal and annual nitrogen (N), phosphorus (P), and carbon (C) budgets of the mesotidal Ria Formosa lagoon, southern Portugal, were estimated to reveal the main inputs and outputs, the seasonal patterns, and how they may influence the ecological functioning of the system. The effects of extreme weather events such as long-lasting strong winds causing upwelling and strong rainfall were assessed. External nutrient inputs were quantified; ocean exchange was assessed in 24-h sampling campaigns, and final calculations were made using a hydrodynamic model of the lagoon. Rain and stream inputs were the main freshwater sources to the lagoon. However, wastewater treatment plant and groundwater discharges dominated nutrient input, together accounting for 98, 96, and 88 % of total C, N, and P input, respectively. Organic matter and nutrients were continuously exported to the ocean. This pattern was reversed following extreme events, such as strong winds in early summer that caused upwelling and after a period of heavy rainfall in late autumn. A principal component analysis (PCA) revealed that ammonium and organic N and C exchange were positively associated with temperature as opposed to pH and nitrate. These variables reflected mostly the benthic lagoon metabolism, whereas particulate P exchange was correlated to Chl a, indicating that this was more related to phytoplankton dynamics. The increase of stochastic events, as expected in climate change scenarios, may have strong effects on the ecological functioning of coastal lagoons, altering the C and nutrient budgets.Portuguese Science and Technology Foundation (FCT) [POCI/MAR/58427/2004, PPCDT/MAR/58427/2004]; Portuguese Science and Technology Foundation (FCT
The fate and behavior of selected endocrine disrupting chemicals in full scale wastewater and sludge treatment unit processes
Endocrine disrupting chemicals are discharged into the environment
mainly through wastewater treatment processes. There is a need for
better understanding of the fate of these compounds in the unit
processes of treatment plant to optimize their removal. The fate of
oestrone, 17β-estradiol, 17α-ethinyestradiol and nonylphenol
in the unit processes of full scale wastewater treatment plants in the
UK, including activated sludge plant, oxidation ditch, biofilter and
rotating biological contractor were investigated. The overall removal
efficiencies of all the compounds ranged from 41 % to 100 %. The
removals were predominantly during the secondary biological treatment
with the rates of removal related to the nitrification rates and the
sludge age. The removal efficiency of the treatment processes were in
the order activated sludge > oxidation ditch > biofilter >
rotating biological contractors. Activated sludge plant configured for
biological nutrient removal showed better removal of the endocrine
disrupting chemicals compared to conventional activated sludge plant
effluents. Tertiary treatment was also significant in the removal
process through solids removal. Overall mechanisms of removal were
biodegradation and sorption unto sludge biomass. Phytoremediation was
also significant in the removal processes. The endocrine disrupting
chemicals persisted in the anaerobic sludge digestion process with
percentage removals ranging fro 10-48 %. Sorption of the endocrine
disrupting chemicals onto the sludge increased with increasing values
for the partitioning coefficients and the organic carbon contents of
the sludge
Effects of iron-ore mining and processing on metal bioavailability in a tropical coastal lagoon
In water systems, water quality and geochemical properties of sediments determine the speciation of trace metals, metal transport, and sediment-water exchange, influencing metal availability and its potential effects on biota. Studies from temperate climates have shown that iron-ore mining and tailing wastewaters, besides being a source of trace metals, usually show high levels of dissolved ions and particulate suspended matter, thus having the potential of indirectly changing metal bioavailability. For the first time in the tropics, we identified the effects of iron-ore mining and processing on metal bioavailability in a coastal lagoon. With an extensive sampling scheme, we investigated the potential sources of metals; the links among metal levels in water, sediments, and invertebrates; and the contrasting effects on metal speciation and bioavailability. The metals Fe, Mn, Al, Cr, Zn, Cu, Ni, Pb, Cd, Hg, and As were measured in water, sediments (surface and profiles), and invertebrates from Mãe-Bá Lagoon and in the sites directly influenced by the mining operations (tailing dams and nearby rivers). In addition, samples from two other lagoons, considered pristine, were analyzed. The study area is located in the southeast of Brazil (Iron Quadrangle Region and a coastal area of Espírito Santo State). General water characteristics included pH, dissolved organic carbon, alkalinity, and anion composition. Water metal speciation was assessed by a speciation model (Chemical Equilibria in Aquatic Systems). Grain-size distribution, organic carbon, carbonate, and acid volatile sulfide (AVS) were determined in sediments. Statistical methods included comparison of means by Mann-Whitney test, ordination and correlation analyses, and analysis of regression for geochemical normalization of metals with grain size. The dissolved metal concentrations, the total metal levels in sediments, and the normalization based on the fine sediment fraction showed that the mining operations constitute potential sources of Fe, Mn, Cr, Cu, Ni, Pb, As, and Hg to Mãe-Bá Lagoon. However, trace metal availability was reduced because of increased pH, hardness, and sulfide content (356 μmol/g) in the sites influenced by the mining. The lagoon showed similar water chemistry as in the mining sites, with metal bioavailability further decreased by the presence of dissolved organic carbon and chloride. Although AVS levels in the lagoon were low (0.48-56 μmol/g), metal bioavailability was reduced because of the presence of organic matter. Metal levels in invertebrates confirmed the predicted low metal bioavailability in Mãe-Bá Lagoon. The lagoon was considered moderately contaminated only by Hg and As. The iron-ore mining and processing studied here constitute potential sources of metal pollution into the tropical lagoon. Contrary to expectations, however, it also contributes to reducing the overall metal bioavailability in the lagoon. These findings are believed to be useful for evaluating metal exposure in a more integrated way, identifying not only the sources of pollution but also how they can affect the components involved in metal speciation and bioavailability in water systems, leading to new insights
Convergence of detrital stoichiometry predicts thresholds of nutrient-stimulated breakdown in streams
Nutrient enrichment of detritus‐based streams increases detrital resource quality for consumers and stimulates breakdown rates of particulate organic carbon (C). The relative importance of dissolved inorganic nitrogen (N) vs. phosphorus (P) for detrital quality and their effects on microbial‐ vs. detritivore‐mediated detrital breakdown are poorly understood. We tested effects of experimental N and P additions on detrital stoichiometry (C:N, C:P) and total and microbial breakdown (i.e., with and without detritivorous shredders, respectively) of five detritus types (four leaf litter species and wood) with different initial C : nutrient content. We enriched five headwater streams continuously for two years at different relative availabilities of N and P and compared breakdown rates and detrital stoichiometry to pretreatment conditions. Total breakdown rates increased with nutrient enrichment and were predicted by altered detrital stoichiometry. Streamwater N and P, fungal biomass, and their interactions affected stoichiometry of detritus. Streamwater N and P decreased detrital C:N, whereas streamwater P had stronger negative effects on detrital C:P. Nutrient addition and fungal biomass reduced C:N by 70% and C:P by 83% on average after conditioning, compared to only 26% for C:N and 10% for C:P under pretreatment conditions. Detritus with lowest initial nutrient content changed the most and had greatest increases in total breakdown rates. Detrital stoichiometry was reduced and differences among detritus types were homogenized by nutrient enrichment. With enrichment, detrital nutrient content approached detritivore nutritional requirements and stimulated greater detritivore vs. microbial litter breakdown. We used breakpoint regression to estimate values of detrital stoichiometry that can potentially be used to indicate elevated breakdown rates. Breakpoint ratios for total breakdown were 41 (C:N) and 1518 (C:P), coinciding with total breakdown rates that were ~1.9 times higher when C:N or C:P fell below these breakpoints. Microbial and shredder‐mediated breakdown rates both increased when C:N and C:P were reduced, suggesting that detrital stoichiometry is useful for predicting litter breakdown dominated by either microbial or shredder activity. Our results show strong effects of nutrient enrichment on detrital stoichiometry and offer a robust link between a potential holistic nutrient loading metric (decreased and homogenized detrital stoichiometry) and increased C loss from stream ecosystems
Influence of Environmental Factors on the Production of MIB and Geosmin Metabolites by Bacteria in a Eutrophic Reservoir
Occurrences of odorous bacterial metabolites, 2‐methylisoborneol (MIB) and geosmin (GSM), in drinking water supply reservoirs are considered as a nuisance by the water industry and a source of complaints from customers. In Eagle Creek Reservoir, routine monitoring programs of MIB and GSM highlight intense odorous outbreaks during the spring season when high inflow discharges occur. Cyanobacteria have always been assumed to be source of these metabolites even if no known producers are present in raw water. A copper‐based algaecide is often used to terminate the metabolite production and the algal growth in the reservoir. The current study was designed to investigate and identify other biological sources involved in the biosynthesis of MIB and GSM metabolites as well as environmental factors that could be important triggers for the growth of bacterial producers. The community structure of the bacterioplankton was determined using a 16S rRNA gene sequencing technique, which showed that not only Cyanobacteria but Actinobacteria also were involved in the reservoir internal production. Planktothrix species was identified as the main source of GSM (p < 0.001) while Streptomyces (Actinobacteria) was very likely responsible of MIB (p < 0.01). Application of an algaecide disrupted GSM and the growth of Planktothrix but was less effective against MIB and Streptomyces . Statistical analyses revealed that MIB‐ and GSM‐causing bacteria were found abundant when the water was enriched with nitrogen, temperature cooler, and the water column mixed
Long-term effects of water quality on the freshwater bivalve Diplodon chilensis (Unionida: Hyriidae) caged at different sites in a North Patagonian river (Argentina)
Water quality was monitored along an Andean river of global importance using the freshwater bivalve Diplodon chilensis as sentinel species. Bivalves were placed in cages at three sites (S1-3) in the Chimehuin river in order to evaluate the long-term effects of a trout hatchery (S2), and the open dump and sewage treatment plant of a nearby city (S3). Water samples and bivalves were collected at 0 (September 2011), 3 (December 2011), 6 (March 2012), 9 (July 2012), and 12 (September 2012) months, from S3, S2 and from a reference site upstream (S1), and physicochemical parameters and the biological response of the caged bivalves were studied. ROS production, antioxidant response, oxidative damage, energy status and morphometric ratios were included as response biomarkers. Most of biomarkers showed site-and time dependence including bivalves transplanted at S1, revealing natural variability. Both anthropogenic perturbed sites (S2 and S3) showed differences in the exposed-bivalves with respect to the reference site (S1) in their biomarker responses after 9 and 12 months of exposure (July and September, respectively). Multivariate analysis showed alterations in hemocytes (ROS, TOSC and NRRT50), energy balance in digestive gland (energy and DGF), and in the detoxification response (GST) and GSH values in gill when bivalves were exposed to hatchery waste; whereas metal and bacterial pollution (S3 in July) caused GSH increase and a reduction of lysosomal damage in hemocytes. Results show that changes in the water quality of Chimehuin river due to the anthropogenic impact can be detected using the biomarkers analyzed on D. chilensis, being a useful tool for studies of long-term monitories.Fil: Yusseppone, Maria Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Marinas y Costeras. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Marinas y Costeras; ArgentinaFil: Bianchi, Virginia Angélica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Castro, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Luquet, Carlos Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Sabatini, Sebastian Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Rios, Maria del Carmen. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Rocchetta, Iara. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentin
- …
