11,080 research outputs found
Robust Hypothesis Tests for Detecting Statistical Evidence of 2D and 3D Interactions in Single-Molecule Measurements
A variety of experimental techniques have improved the 2D and 3D spatial
resolution that can be extracted from \emph{in vivo} single-molecule
measurements. This enables researchers to quantitatively infer the magnitude
and directionality of forces experienced by biomolecules in their native
cellular environments. Situations where such forces are biologically relevant
range from mitosis to directed transport of protein cargo along cytoskeletal
structures. Models commonly applied to quantify single-molecule dynamics assume
that effective forces and velocity in the (or ) directions are
statistically independent, but this assumption is physically unrealistic in
many situations. We present a hypothesis testing approach capable of
determining if there is evidence of statistical dependence between positional
coordinates in experimentally measured trajectories; if the hypothesis of
independence between spatial coordinates is rejected, then a new model
accounting for 2D (3D) interactions should be considered to more faithfully
represent the underlying experimental kinetics. The technique is robust in the
sense that 2D (3D) interactions can be detected via statistical hypothesis
testing even if there is substantial inconsistency between the physical
particle's actual noise sources and the simplified model's assumed noise
structure. For example, 2D (3D) interactions can be reliably detected even if
the researcher assumes normal diffusion, but the experimental data experiences
"anomalous diffusion" and/or is subjected to a measurement noise characterized
by a distribution differing from that assumed by the fitted model. The approach
is demonstrated on control simulations and on experimental data (IFT88 directed
transport in the primary cilium).Comment: 7 pages, 6 figure
Capillarity in pressure infiltration: improvements in characterization of high-temperature systems
In the pressure infiltration of metal matrix composites, molten metal is injected under external pressure into a porous preform of the reinforcing material. Equilibrium capillary parameters characterizing wetting for this process are summarized in plots of metal saturation versus applied pressure, also known as drainage curves. Such curves can be measured in our laboratory during a single experiment with an infiltration apparatus designed to track the rate of metal penetration into porous preforms under conditions characteristic of metal matrix composite processing (temperatures in excess of 1000°C and pressures in the order of 10MPa). For such measurements to be valid, infiltration of the preform with molten metal must be mechanically quasi-static, i.e., the metal must flow at a rate sufficiently low for the metal pressure to be essentially uniform across the preform at all times. We examine this requirement quantitatively, using a finite-difference model that simulates the unsaturated unidirectional ingress of molten metal into a ceramic particle preform of finite width. We furthermore present improvements in the experimental apparatus developed in our laboratory to measure the entire drainage curve in a single experiment. We compare numerical results with new experimental data for the copper/alumina system to show (i) that pressurization rates sufficiently low for quasi-static infiltration can be produced with this apparatus, and (ii) that taking the relative permeability equal to the saturation yields better agreement with experiment than does the expression originally proposed by Brooks and Core
The first direct measurement of ¹²C (¹²C,n) ²³Mg at stellar energies
Neutrons produced by the carbon fusion reaction ¹²C(¹²C,n)²³Mg play an important role in stellar nucleosynthesis. However, past studies have shown large discrepancies between experimental data and theory, leading to an uncertain cross section extrapolation at astrophysical energies. We present the first direct measurement that extends deep into the astrophysical energy range along with a new and improved extrapolation technique based on experimental data from the mirror reaction ¹²C(¹²C,p)²³Na. The new reaction rate has been determined with a well-defined uncertainty that exceeds the precision required by astrophysics models. Using our constrained rate, we find that ¹²C(¹²C,n)²³Mg is crucial to the production of Na and Al in Pop-III Pair Instability Supernovae. It also plays a non-negligible role in the production of weak s-process elements as well as in the production of the important galacti
Displacements analysis of self-excited vibrations in turning
The actual research deals with determining by a new protocol the necessary
parameters considering a three-dimensional model to simulate in a realistic way
the turning process on machine tool. This paper is dedicated to the
experimental displacements analysis of the block tool / block workpiece with
self-excited vibrations. In connexion with turning process, the self-excited
vibrations domain is obtained starting from spectra of two accelerometers. The
existence of a displacements plane attached to the tool edge point is revealed.
This plane proves to be inclined compared to the machines tool axes. We
establish that the tool tip point describes an ellipse. This ellipse is very
small and can be considered as a small straight line segment for the stable
cutting process (without vibrations). In unstable mode (with vibrations) the
ellipse of displacements is really more visible. A difference in phase occurs
between the tool tip displacements on the radial direction and on the cutting
one. The feed motion direction and the cutting one are almost in phase. The
values of the long and small ellipse axes (and their ratio) shows that these
sizes are increasing with the feed rate value. The axis that goes through the
stiffness center and the tool tip represents the maximum stiffness direction.
The maximum (resp. minimum) stiffness axis of the tool is perpendicular to the
large (resp. small) ellipse displacements axis. FFT analysis of the
accelerometers signals allows to reach several important parameters and
establish coherent correlations between tool tip displacements and the static -
elastic characteristics of the machine tool components tested
Double-exchange is not the cause of ferromagnetism in doped manganites
The coexistence of ferromagnetism and metallic conduction in doped manganites
has long been explained by a double-exchange model in which the ferromagnetic
exchange arises from the carrier hopping. We evaluate the zero-temperature spin
stiffness D(0) and the Curie temperature T_{C} on the basis of the
double-exchange model using the measured values of the bare bandwidth W and the
Hund's rule coupling J_{H}. The calculated D(0) and T_{C} values are too small
compared with the observed ones even in the absence of interactions. A
realistic onsite interorbital Coulomb repulsion can reduce D(0) substantially
in the case of a 2-orbital model. Furthermore, experiment shows that D(0) is
simply proportional to x in La_{1-x}Sr_{x}MnO_{3} system, independent of
whether the ground state is a ferromagnetic insulator or metal. These results
strongly suggest that the ferromagnetism in manganites does not originate from
the double-exchange interaction. On the other hand, an alternative model based
on the d-p exchange can semi-quantitatively explain the ferromagnetism of doped
manganites at low temperatures.Comment: 6 pages, 3 figures, some modifications in scientific content
Gamow Shell Model Description of Weakly Bound Nuclei and Unbound Nuclear States
We present the study of weakly bound, neutron-rich nuclei using the nuclear
shell model employing the complex Berggren ensemble representing the bound
single-particle states, unbound Gamow states, and the non-resonant continuum.
In the proposed Gamow Shell Model, the Hamiltonian consists of a one-body
finite depth (Woods-Saxon) potential and a residual two-body interaction. We
discuss the basic ingredients of the Gamow Shell Model. The formalism is
illustrated by calculations involving {\it several} valence neutrons outside
the double-magic core: He and O.Comment: 19 pages, 20 encapsulated PostScript figure
- …
