23,786 research outputs found

    Tele-autonomous systems: New methods for projecting and coordinating intelligent action at a distance

    Get PDF
    There is a growing need for humans to perform complex remote operations and to extend the intelligence and experience of experts to distant applications. It is asserted that a blending of human intelligence, modern information technology, remote control, and intelligent autonomous systems is required, and have coined the term tele-autonomous technology, or tele-automation, for methods producing intelligent action at a distance. Tele-automation goes beyond autonomous control by blending in human intelligence. It goes beyond tele-operation by incorporating as much autonomy as possible and/or reasonable. A new approach is discussed for solving one of the fundamental problems facing tele-autonomous systems: The need to overcome time delays due to telemetry and signal propagation. New concepts are introduced called time and position clutches, that allow the time and position frames between the local user control and the remote device being controlled, to be desynchronized respectively. The design and implementation of these mechanisms are described in detail. It is demonstrated that these mechanisms lead to substantial telemanipulation performance improvements, including the result of improvements even in the absence of time delays. The new controls also yield a simple protocol for control handoffs of manipulation tasks between local operators and remote systems

    Tele-Autonomous control involving contact

    Get PDF
    Object localization and its application in tele-autonomous systems are studied. Two object localization algorithms are presented together with the methods of extracting several important types of object features. The first algorithm is based on line-segment to line-segment matching. Line range sensors are used to extract line-segment features from an object. The extracted features are matched to corresponding model features to compute the location of the object. The inputs of the second algorithm are not limited only to the line features. Featured points (point to point matching) and featured unit direction vectors (vector to vector matching) can also be used as the inputs of the algorithm, and there is no upper limit on the number of the features inputed. The algorithm will allow the use of redundant features to find a better solution. The algorithm uses dual number quaternions to represent the position and orientation of an object and uses the least squares optimization method to find an optimal solution for the object's location. The advantage of using this representation is that the method solves for the location estimation by minimizing a single cost function associated with the sum of the orientation and position errors and thus has a better performance on the estimation, both in accuracy and speed, than that of other similar algorithms. The difficulties when the operator is controlling a remote robot to perform manipulation tasks are also discussed. The main problems facing the operator are time delays on the signal transmission and the uncertainties of the remote environment. How object localization techniques can be used together with other techniques such as predictor display and time desynchronization to help to overcome these difficulties are then discussed

    Quaternionic Root Systems and Subgroups of the Aut(F4)Aut(F_{4})

    Full text link
    Cayley-Dickson doubling procedure is used to construct the root systems of some celebrated Lie algebras in terms of the integer elements of the division algebras of real numbers, complex numbers, quaternions and octonions. Starting with the roots and weights of SU(2) expressed as the real numbers one can construct the root systems of the Lie algebras of SO(4),SP(2)= SO(5),SO(8),SO(9),F_{4} and E_{8} in terms of the discrete elements of the division algebras. The roots themselves display the group structures besides the octonionic roots of E_{8} which form a closed octonion algebra. The automorphism group Aut(F_{4}) of the Dynkin diagram of F_{4} of order 2304, the largest crystallographic group in 4-dimensional Euclidean space, is realized as the direct product of two binary octahedral group of quaternions preserving the quaternionic root system of F_{4}.The Weyl groups of many Lie algebras, such as, G_{2},SO(7),SO(8),SO(9),SU(3)XSU(3) and SP(3)X SU(2) have been constructed as the subgroups of Aut(F_{4}). We have also classified the other non-parabolic subgroups of Aut(F_{4}) which are not Weyl groups. Two subgroups of orders192 with different conjugacy classes occur as maximal subgroups in the finite subgroups of the Lie group G2G_{2} of orders 12096 and 1344 and proves to be useful in their constructions. The triality of SO(8) manifesting itself as the cyclic symmetry of the quaternionic imaginary units e_{1},e_{2},e_{3} is used to show that SO(7) and SO(9) can be embedded triply symmetric way in SO(8) and F_{4} respectively

    The Primary Pretenders

    Full text link
    We call a composite number q such that there exists a positive integer b with b^p == b (mod q) a prime pretender to base b. The least prime pretender to base b is the primary pretender q_b. It is shown that there are only 132 distinct primary pretenders, and that q_b is a periodic function of b whose period is the 122-digit number 19568584333460072587245340037736278982017213829337604336734362- 294738647777395483196097971852999259921329236506842360439300.Comment: 7 page

    Tele-autonomous control involving contacts: The applications of a high precision laser line range sensor

    Get PDF
    The object localization algorithm based on line-segment matching is presented. The method is very simple and computationally fast. In most cases, closed-form formulas are used to derive the solution. The method is also quite flexible, because only few surfaces (one or two) need to be accessed (sensed) to gather necessary range data. For example, if the line-segments are extracted from boundaries of a planar surface, only parameters of one surface and two of its boundaries need to be extracted, as compared with traditional point-surface matching or line-surface matching algorithms which need to access at least three surfaces in order to locate a planar object. Therefore, this method is especially suitable for applications when an object is surrounded by many other work pieces and most of the object is very difficult, is not impossible, to be measured; or when not all parts of the object can be reached. The theoretical ground on how to use line range sensor to located an object was laid. Much work has to be done in order to be really useful

    A NASA high-power space-based laser research and applications program

    Get PDF
    Applications of high power lasers are discussed which might fulfill the needs of NASA missions, and the technology characteristics of laser research programs are outlined. The status of the NASA programs or lasers, laser receivers, and laser propulsion is discussed, and recommendations are presented for a proposed expanded NASA program in these areas. Program elements that are critical are discussed in detail

    A Thin HI Circumnuclear Disk in NGC4261

    Get PDF
    We report on high sensitivity, spectral line VLBI observations of the HI absorption feature in the radio galaxy NGC4261. Although absorption is only detectable on the most sensitive baseline, it can be unambiguously associated with the counterjet and is interpreted to originate in a thin atomic circumnuclear disk. This structure is probably a continuation of the dusty accretion disk inferred from HST imaging, which could be feeding the massive black hole. HI column densities in front of the counterjet of the order of 10^{21}(T_sp/100 K) cm^{-2} are derived, consistent with X-ray data and VLBI scale free-free absorption. The data presented here are the result of the first scientific project processed on the new EVN MkIV data processor.Comment: 4 pages, 3 postscript figures, Astronomy and Astrophysics Letters, in pres

    Study of process technology for GaAlAs/GaAs heteroface solar cells

    Get PDF
    Two processes were considered: the infinite melt process and the finite melt process. The only technique that is developed to the point that 10,000 cells could be produced in one year is the infinite melt liquid phase epitaxy process. The lowest cost per cell was achieved with the advanced metal organic chemical vapor deposition process. Molecular beam epitaxy was limited by the slow growth rate. The lowest cost, an 18 percent efficient cell at air mass zero, was approximately $70 per watt
    corecore