3,173 research outputs found
Recommended from our members
Freeform Bioprinting of Liver Encapsulated in Alginate Hydrogels Tissue Constructs for Pharmacokinetic Study
An in vitro model that can be realistically and inexpensively used to predict human response to
various drug administration and toxic chemical exposure is needed. By fabricating a microscale
3D physiological tissue construct consisting of an array of channels and tissue-embedded
chambers, one can selectively develop various biomimicking mammalian tissues for a number of
pharmaceutical applications, for example, experimental pharmaceutical screening for drug
efficacy and toxicity along with apprehending the disposition and metabolic profile of a
candidate drug. This paper addresses issues relating to the development and implementation of a
bioprinting process for freeform fabrication of a 3D cell-encapsulated hydrogel-based tissue
construct, the direct integration onto a microfluidic device for pharmacokinetic study, and the
underlying engineering science for the fabrication of a 3D microscale tissue chamber as well as
its application in pharmacokinetic study. To this end, a prototype 3D microfluidic tissue chamber
embedded with liver cells encapsulated within a hydrogel matrix construct is bioprinted as a
physiological in vitro model for pharmacokinetic study. The developed fabrication processes are
further validated and parameters optimized by assessing cell viability and liver cell phenotype, in
which metabolic and synthetic liver functions are quantitated.Mechanical Engineerin
Generalized Voxel Coloring
Image-based reconstruction from randomly scattered views is a challenging problem. We present a new algorithm that extends Seitz and Dyer’s Voxel Coloring algorithm. Unlike their algorithm, ours can use images from arbitrary camera locations. The key problem in this class of algorithms is that of identifying the images from which a voxel is visible. Unlike Kutulakos and Seitz’s Space Carving technique, our algorithm solves this problem exactly and the resulting reconstructions yield better results in our application, which is synthesizing new views. One variation of our algorithm minimizes color consistency comparisons; another uses less memory and can be accelerated with graphics hardware. We present efficiency measurements and, for comparison, we present images synthesized using our algorithm and Space Carving
Volumetric Warping for Voxel Coloring on an Infinite Domain
Starting with a set of calibrated photographs taken of a scene, voxel coloring algorithms reconstruct three-dimensional surface models on a finite spatial domain. In this paper, we present a method that warps the voxel space, so that the domain of the reconstruction extends to an infinite or semi-infinite volume. Doing so enables the reconstruction of objects far away from the cameras, as well as reconstruction of a background environment. New views synthesized using the warped voxel space have improved photo-realism
Estimation of dominance variance in purebred Yorkshire swine
peer reviewedWe used 179,485 Yorkshire reproductive and 239,354 Yorkshire growth records to estimate additive and dominance variances by Method Fraktur R. Estimates were obtained for number born alive (NBA), 21-d litter weight (LWT), days to 104.5 kg (DAYS), and backfat at 104.5 kg (BF). The single-trait models for NBA and LWT included the fixed effects of contemporary group and regression on inbreeding percentage and the random effects mate within contemporary group, animal permanent environment, animal additive, and parental dominance. The single-trait models for DAYS and BF included the fixed effects of contemporary group, sex, and regression on inbreeding percentage and the random effects litter of birth, dam permanent environment, animal additive, and parental dominance. Final estimates were obtained from six samples for each trait. Regression coefficients for 10% inbreeding were found to be -.23 for NBA, -.52 kg for LWT, 2.1 d for DAYS, and 0 mm for BF. Estimates of additive and dominance variances expressed as a percentage of phenotypic variances were, respectively, 8.8 +/- .5 and 2.2 +/- .7 for NBA, 8.1 +/- 1.1 and 6.3 +/- .9 for LWT, 33.2 +/- .4 and 10.3 +/- 1.5 for DAYS, and 43.6 +/- .9 and 4.8 +/- .7 for BF. The ratio of dominance to additive variances ranged from .78 to .11
Methods for Volumetric Reconstruction of Visual Scenes
In this paper, we present methods for 3D volumetric reconstruction of visual scenes photographed by multiple calibrated cameras placed at arbitrary viewpoints. Our goal is to generate a 3D model that can be rendered to synthesize new photo-realistic views of the scene. We improve upon existing voxel coloring/space carving approaches by introducing new ways to compute visibility and photo-consistency, as well as model infinitely large scenes. In particular, we describe a visibility approach that uses all possible color information from the photographs during reconstruction, photo-consistency measures that are more robust and/or require less manual intervention, and a volumetric warping method for application of these reconstruction methods to large-scale scenes
The Ge(001) (2 × 1) reconstruction: asymmetric dimers and multilayer relaxation observed by grazing incidence X-ray diffraction
Grazing incidence X-ray diffraction has been used to analyze in detail the atomic structure of the (2 × 1) reconstruction of the Ge(001) surface involving far reaching subsurface relaxations. Two kinds of disorder models, a statistical and a dynamical were taken into account for the data analysis, both indicating substantial disorder along the surface normal. This can only be correlated to asymmetric dimers.
Considering a statistical disorder model assuming randomly oriented dimers the analysis of 13 symmetrically independent in-plane fractional order reflections and of four fractional order reciprocal lattice rods up to the maximum attainable momentum transfer qz = 3c* (c* = 1.77 × 10−1 Å−1) indicates the formation of asymmetric dimers characterized by R>D = 2.46(5) Å as compared to the bulk bonding length of R = 2.45 Å. The dimer height of Δ Z = 0.74(15) Å corresponds to a dimer buckling angle of 17(4)°. The data refinement using anisotropic thermal parameters leads to a bonding length of RD = 2.44(4) Å and to a large anisotropy of the root mean-square vibration amplitudes of the dimer atoms (u112) 1/2 = 0.25 Å, (u222)1/2 = 0.14 Å, (u332)1/2 = 0.50 Å). We have evidence for lateral and vertical disp tenth layer below the surface
- …
