8,721 research outputs found

    Edge Electron Gas

    Full text link
    The uniform electron gas, the traditional starting point for density-based many-body theories of inhomogeneous systems, is inappropriate near electronic edges. In its place we put forward the appropriate concept of the edge electron gas.Comment: 4 pages RevTex with 7 ps-figures included. Minor changes in title,text and figure

    Ground-state energy and Wigner crystallization in thick 2D-electron systems

    Full text link
    The ground state energy of the 2-D Wigner crystal is determined as a function of the thickness of the electron layer and the crystal structure. The method of evaluating the exchange-correlation energy is tested using known results for the infinitely-thin 2D system. Two methods, one based on the local-density approximation(LDA), and another based on the constant-density approximation (CDA) are established by comparing with quantum Monte-Carlo (QMC) results. The LDA and CDA estimates for the Wigner transition of the perfect 2D fluid are at rs=38r_s=38 and 32 respectively, compared with rs=35±5r_s=35\pm5 from QMC. For thick-2D layers as found in Hetero-junction-insulated-gate field-effect transistors, the LDA and CDA predictions of the Wigner transition are at rs=20.5r_s=20.5 and 15.5 respectively. Impurity effects are not considered here.Comment: Last figure and Table are modified in the revised version. Conclusions regarding the Wigner transition in thick layers are modified in the revised version. Latex manuscript, four figure

    Spin hydrodynamics in the S = 1/2 anisotropic Heisenberg chain

    Full text link
    We study the finite-temperature dynamical spin susceptibility of the one-dimensional (generalized) anisotropic Heisenberg model within the hydrodynamic regime of small wave vectors and frequencies. Numerical results are analyzed using the memory function formalism with the central quantity being the spin-current decay rate gamma(q,omega). It is shown that in a generic nonintegrable model the decay rate is finite in the hydrodynamic limit, consistent with normal spin diffusion modes. On the other hand, in the gapless integrable model within the XY regime of anisotropy Delta < 1 the behavior is anomalous with vanishing gamma(q,omega=0) proportional to |q|, in agreement with dissipationless uniform transport. Furthermore, in the integrable system the finite-temperature q = 0 dynamical conductivity sigma(q=0,omega) reveals besides the dissipationless component a regular part with vanishing sigma_{reg}(q=0,omega to 0) to 0

    Density-functional theory of polar insulators

    Get PDF
    We examine the density-functional theory of macroscopic insulators, obtained in the large-cluster limit or under periodic boundary conditions. For polar crystals, we find that the two procedures are not equivalent. In a large-cluster case, the exact exchange-correlation potential acquires a homogeneous ``electric field'' which is absent from the usual local approximations, and the Kohn-Sham electronic system becomes metallic. With periodic boundary conditions, such a field is forbidden, and the polarization deduced from Kohn-Sham wavefunctions is incorrect even if the exact functional is used

    The Decay Properties of the Finite Temperature Density Matrix in Metals

    Full text link
    Using ordinary Fourier analysis, the asymptotic decay behavior of the density matrix F(r,r') is derived for the case of a metal at a finite electronic temperature. An oscillatory behavior which is damped exponentially with increasing distance between r and r' is found. The decay rate is not only determined by the electronic temperature, but also by the Fermi energy. The theoretical predictions are confirmed by numerical simulations

    Spin-Charge separation in a model of two coupled chains

    Full text link
    A model of interacting electrons living on two chains coupled by a transverse hopping tt_\perp, is solved exactly by bosonization technique. It is shown that tt_\perp does modify the shape of the Fermi surface also in presence of interaction, although charge and spin excitations keep different velocities uρu_\rho, uσu_\sigma. Two different regimes occur: at short distances, xξ=(uρuσ)/4tx\ll \xi = (u_\rho - u_\sigma)/4t_\perp, the two chain model is not sensitive to tt_\perp, while for larger separation xξx\gg \xi inter--chain hopping is relevant and generates further singularities in the electron Green function besides those due to spin-charge decoupling. (2 figures not included. Figure requests: FABRIZIO@ITSSISSA)Comment: 12 pages, LATEX(REVTEX), SISSA 150/92/CM/M

    Simple model of the static exchange-correlation kernel of a uniform electron gas with long-range electron-electron interaction

    Full text link
    A simple approximate expression in real and reciprocal spaces is given for the static exchange-correlation kernel of a uniform electron gas interacting with the long-range part only of the Coulomb interaction. This expression interpolates between the exact asymptotic behaviors of this kernel at small and large wave vectors which in turn requires, among other thing, information from the momentum distribution of the uniform electron gas with the same interaction that have been calculated in the G0W0 approximation. This exchange-correlation kernel as well as its complement analogue associated to the short-range part of the Coulomb interaction are more local than the Coulombic exchange-correlation kernel and constitute potential ingredients in approximations for recent adiabatic connection fluctuation-dissipation and/or density functional theory approaches of the electronic correlation problem based on a separate treatment of long-range and short-range interaction effects.Comment: 14 pages, 14 figures, to be published in Phys. Rev.

    Probing the band structure of quadri-layer graphene with magneto-phonon resonance

    Full text link
    We show how the magneto-phonon resonance, particularly pronounced in sp2 carbon allotropes, can be used as a tool to probe the band structure of multilayer graphene specimens. Even when electronic excitations cannot be directly observed, their coupling to the E2g phonon leads to pronounced oscillations of the phonon feature observed through Raman scattering experiments with multiple periods and amplitudes detemined by the electronic excitation spectrum. Such experiment and analysis have been performed up to 28T on an exfoliated 4-layer graphene specimen deposited on SiO2, and the observed oscillations correspond to the specific AB stacked 4-layer graphene electronic excitation spectrum.Comment: 11 pages, 5 Fi
    corecore