8,721 research outputs found
Edge Electron Gas
The uniform electron gas, the traditional starting point for density-based
many-body theories of inhomogeneous systems, is inappropriate near electronic
edges. In its place we put forward the appropriate concept of the edge electron
gas.Comment: 4 pages RevTex with 7 ps-figures included. Minor changes in
title,text and figure
Ground-state energy and Wigner crystallization in thick 2D-electron systems
The ground state energy of the 2-D Wigner crystal is determined as a function
of the thickness of the electron layer and the crystal structure. The method of
evaluating the exchange-correlation energy is tested using known results for
the infinitely-thin 2D system. Two methods, one based on the local-density
approximation(LDA), and another based on the constant-density approximation
(CDA) are established by comparing with quantum Monte-Carlo (QMC) results. The
LDA and CDA estimates for the Wigner transition of the perfect 2D fluid are at
and 32 respectively, compared with from QMC. For thick-2D
layers as found in Hetero-junction-insulated-gate field-effect transistors, the
LDA and CDA predictions of the Wigner transition are at and 15.5
respectively. Impurity effects are not considered here.Comment: Last figure and Table are modified in the revised version.
Conclusions regarding the Wigner transition in thick layers are modified in
the revised version. Latex manuscript, four figure
Spin hydrodynamics in the S = 1/2 anisotropic Heisenberg chain
We study the finite-temperature dynamical spin susceptibility of the
one-dimensional (generalized) anisotropic Heisenberg model within the
hydrodynamic regime of small wave vectors and frequencies. Numerical results
are analyzed using the memory function formalism with the central quantity
being the spin-current decay rate gamma(q,omega). It is shown that in a generic
nonintegrable model the decay rate is finite in the hydrodynamic limit,
consistent with normal spin diffusion modes. On the other hand, in the gapless
integrable model within the XY regime of anisotropy Delta < 1 the behavior is
anomalous with vanishing gamma(q,omega=0) proportional to |q|, in agreement
with dissipationless uniform transport. Furthermore, in the integrable system
the finite-temperature q = 0 dynamical conductivity sigma(q=0,omega) reveals
besides the dissipationless component a regular part with vanishing
sigma_{reg}(q=0,omega to 0) to 0
Density-functional theory of polar insulators
We examine the density-functional theory of macroscopic insulators, obtained in the large-cluster limit or under periodic boundary conditions. For polar crystals, we find that the two procedures are not equivalent. In a large-cluster case, the exact exchange-correlation potential acquires a homogeneous ``electric field'' which is absent from the usual local approximations, and the Kohn-Sham electronic system becomes metallic. With periodic boundary conditions, such a field is forbidden, and the polarization deduced from Kohn-Sham wavefunctions is incorrect even if the exact functional is used
The Decay Properties of the Finite Temperature Density Matrix in Metals
Using ordinary Fourier analysis, the asymptotic decay behavior of the density
matrix F(r,r') is derived for the case of a metal at a finite electronic
temperature. An oscillatory behavior which is damped exponentially with
increasing distance between r and r' is found. The decay rate is not only
determined by the electronic temperature, but also by the Fermi energy. The
theoretical predictions are confirmed by numerical simulations
Spin-Charge separation in a model of two coupled chains
A model of interacting electrons living on two chains coupled by a transverse
hopping , is solved exactly by bosonization technique. It is shown
that does modify the shape of the Fermi surface also in presence of
interaction, although charge and spin excitations keep different velocities
, . Two different regimes occur: at short distances, , the two chain model is not sensitive to
, while for larger separation inter--chain hopping is
relevant and generates further singularities in the electron Green function
besides those due to spin-charge decoupling. (2 figures not included. Figure
requests: FABRIZIO@ITSSISSA)Comment: 12 pages, LATEX(REVTEX), SISSA 150/92/CM/M
Simple model of the static exchange-correlation kernel of a uniform electron gas with long-range electron-electron interaction
A simple approximate expression in real and reciprocal spaces is given for
the static exchange-correlation kernel of a uniform electron gas interacting
with the long-range part only of the Coulomb interaction. This expression
interpolates between the exact asymptotic behaviors of this kernel at small and
large wave vectors which in turn requires, among other thing, information from
the momentum distribution of the uniform electron gas with the same interaction
that have been calculated in the G0W0 approximation. This exchange-correlation
kernel as well as its complement analogue associated to the short-range part of
the Coulomb interaction are more local than the Coulombic exchange-correlation
kernel and constitute potential ingredients in approximations for recent
adiabatic connection fluctuation-dissipation and/or density functional theory
approaches of the electronic correlation problem based on a separate treatment
of long-range and short-range interaction effects.Comment: 14 pages, 14 figures, to be published in Phys. Rev.
Probing the band structure of quadri-layer graphene with magneto-phonon resonance
We show how the magneto-phonon resonance, particularly pronounced in sp2
carbon allotropes, can be used as a tool to probe the band structure of
multilayer graphene specimens. Even when electronic excitations cannot be
directly observed, their coupling to the E2g phonon leads to pronounced
oscillations of the phonon feature observed through Raman scattering
experiments with multiple periods and amplitudes detemined by the electronic
excitation spectrum. Such experiment and analysis have been performed up to 28T
on an exfoliated 4-layer graphene specimen deposited on SiO2, and the observed
oscillations correspond to the specific AB stacked 4-layer graphene electronic
excitation spectrum.Comment: 11 pages, 5 Fi
- …
