3,474 research outputs found

    The use of interactive multi-player games to enhance second language acquisition of both Mandarin and English

    Get PDF
    MMORPG have become a popular area of language acquisition research, raising the question of whether games and education can be effectively combined to create a game based on research that has education within its core yet still presents as an engaging gaming experience and provides a mutual learning platform for two languages. The current study is longitudinal and focuses on the question: Can interactive RPGs enhance second language acquisition? <br/

    RPGs to enhance the second language acquisition of both Mandarin and English

    Get PDF
    Research Question: “To what degree can it be evidenced that interactive role playing games enhance the mutual second language acquisition of both Mandarin and English?”♦ Small scale side project to ascertain avatar interaction preferences based on perception.♦ Pilot study will apply psycholinguistic and sociolinguistic research knowledge to specifically designed game

    Bubble formation at two adjacent submerged orifices in inviscid fluids

    Get PDF
    A theoretical model has been developed as an extension of single orifice bubble formation to investigate the growth and detachment of vapor/gas bubbles formed at two adjacent submerged orifices in inviscid fluids. The mathematical model treats the two bubbles as an expanding control volume moving to the line of centers above a wall. The movement of the bubbles is obtained by application of force balance acting on the bubble and accounts for surface tension, buoyancy, steam momentum and liquid inertia effects. The liquid inertia effects are determined by applying inviscid and irrotational flow assumptions to allow potential flow theory to calculate the liquid velocity field which then allows the pressure distribution to be calculated. The model is extended to include the mass and energy equations to model the steam bubble formation in sub-cooled water. The theoretical results are compared with the available experimental data of bubble formation during constant mass flow steam bubble formation at two submerged upward facing orifices in sub-cooled water. The model was validated by available experimental data for the growth and detachment processes of two adjacent 1 mm orifices at system pressures of 2 and 3 bars, flow rates of 1.2-4 g/min at sub-cooling of 3.5-35 ºC. The comparisons of theory and experiments indicate that the model successfully predicts the bubbles growth and detachment for the range of conditions studied

    A computational fluid dynamics evaluation of a pneumatic safety relief valve

    Get PDF
    Safety relief valves are well established components preventing catastrophic failure of pressurised systems when non-normal operating conditions occur. However, it is only recently with developments in CFD techniques that the capability to predict the complex flow conditions occurring in the valves has been possible resulting in only limited studies being found in the literature. This paper presents experimental and theoretical investigations applied to a safety relief valve designed for the refrigeration industry but extended here to consider pneumatic systems since air is the compressible fluid. The discharge flow rate and valve forces are determined both theoretically and experimentally for different valve lift conditions and related to the detailed flow conditions (pressure, temperature and Mach number) in the valve predicted by CFD techniques. The CFD code FLUENT has been used with a two dimensional axisymmetric RANS approach using the k-İ turbulent model to predict the highly compressible flow through the valve. The model has been validated by comparison with experimental measurements and the predicted results show good agreement, providing confidence in the use of CFD techniques for valve design and improvement

    A generalized Fellner-Schall method for smoothing parameter estimation with application to Tweedie location, scale and shape models

    Get PDF
    We consider the estimation of smoothing parameters and variance components in models with a regular log likelihood subject to quadratic penalization of the model coefficients, via a generalization of the method of Fellner (1986) and Schall (1991). In particular: (i) we generalize the original method to the case of penalties that are linear in several smoothing parameters, thereby covering the important cases of tensor product and adaptive smoothers; (ii) we show why the method's steps increase the restricted marginal likelihood of the model, that it tends to converge faster than the EM algorithm, or obvious accelerations of this, and investigate its relation to Newton optimization; (iii) we generalize the method to any Fisher regular likelihood. The method represents a considerable simplification over existing methods of estimating smoothing parameters in the context of regular likelihoods, without sacrificing generality: for example, it is only necessary to compute with the same first and second derivatives of the log-likelihood required for coefficient estimation, and not with the third or fourth order derivatives required by alternative approaches. Examples are provided which would have been impossible or impractical with pre-existing Fellner-Schall methods, along with an example of a Tweedie location, scale and shape model which would be a challenge for alternative methods

    Comparison of the computed flow field around a bubble growing at an orifice using PIV techniques

    Get PDF
    For bubbles growing rapidly at orifices, the inertia of the liquid displacement and the resultant liquid flow field contribute to the production of an inertia force which tends to retard bubble movement. It is therefore the purpose of this paper to report on a study to examine the validity of liquid velocity fields predicted by potential flow methods and measurements made using Particle Image Velocimetry (PIV) techniques. Air bubbles are generated in water at atmospheric conditions from a 1 mm diameter orifice. The process is transient and occurs over a period of approximately 80 msecs. Therefore a combination of high speed video techniques and PIV image processing has been used to determine the liquid velocity vector fields during the bubble growth, detachment and translation periods. This paper will present a summary of the experimental techniques and the theoretical model and discuss the results of the study

    Electrostatic Field Classifier for Deficient Data

    Get PDF
    This paper investigates the suitability of recently developed models based on the physical field phenomena for classification problems with incomplete datasets. An original approach to exploiting incomplete training data with missing features and labels, involving extensive use of electrostatic charge analogy, has been proposed. Classification of incomplete patterns has been investigated using a local dimensionality reduction technique, which aims at exploiting all available information rather than trying to estimate the missing values. The performance of all proposed methods has been tested on a number of benchmark datasets for a wide range of missing data scenarios and compared to the performance of some standard techniques. Several modifications of the original electrostatic field classifier aiming at improving speed and robustness in higher dimensional spaces are also discussed

    Diagonal and Low-Rank Matrix Decompositions, Correlation Matrices, and Ellipsoid Fitting

    Get PDF
    In this paper we establish links between, and new results for, three problems that are not usually considered together. The first is a matrix decomposition problem that arises in areas such as statistical modeling and signal processing: given a matrix XX formed as the sum of an unknown diagonal matrix and an unknown low rank positive semidefinite matrix, decompose XX into these constituents. The second problem we consider is to determine the facial structure of the set of correlation matrices, a convex set also known as the elliptope. This convex body, and particularly its facial structure, plays a role in applications from combinatorial optimization to mathematical finance. The third problem is a basic geometric question: given points v1,v2,...,vnRkv_1,v_2,...,v_n\in \R^k (where n>kn > k) determine whether there is a centered ellipsoid passing \emph{exactly} through all of the points. We show that in a precise sense these three problems are equivalent. Furthermore we establish a simple sufficient condition on a subspace UU that ensures any positive semidefinite matrix LL with column space UU can be recovered from D+LD+L for any diagonal matrix DD using a convex optimization-based heuristic known as minimum trace factor analysis. This result leads to a new understanding of the structure of rank-deficient correlation matrices and a simple condition on a set of points that ensures there is a centered ellipsoid passing through them.Comment: 20 page

    X-ray Lighthouses of the High-Redshift Universe. II. Further Snapshot Observations of the Most Luminous z>4 Quasars with Chandra

    Get PDF
    We report on Chandra observations of a sample of 11 optically luminous (Mb<-28.5) quasars at z=3.96-4.55 selected from the Palomar Digital Sky Survey and the Automatic Plate Measuring Facility Survey. These are among the most luminous z>4 quasars known and hence represent ideal witnesses of the end of the "dark age ''. Nine quasars are detected by Chandra, with ~2-57 counts in the observed 0.5-8 keV band. These detections increase the number of X-ray detected AGN at z>4 to ~90; overall, Chandra has detected ~85% of the high-redshift quasars observed with snapshot (few kilosecond) observations. PSS 1506+5220, one of the two X-ray undetected quasars, displays a number of notable features in its rest-frame ultraviolet spectrum, the most prominent being broad, deep SiIV and CIV absorption lines. The average optical-to-X-ray spectral index for the present sample (=-1.88+/-0.05) is steeper than that typically found for z>4 quasars but consistent with the expected value from the known dependence of this spectral index on quasar luminosity. We present joint X-ray spectral fitting for a sample of 48 radio-quiet quasars in the redshift range 3.99-6.28 for which Chandra observations are available. The X-ray spectrum (~870 counts) is well parameterized by a power law with Gamma=1.93+0.10/-0.09 in the rest-frame ~2-40 keV band, and a tight upper limit of N_H~5x10^21 cm^-2 is obtained on any average intrinsic X-ray absorption. There is no indication of any significant evolution in the X-ray properties of quasars between redshifts zero and six, suggesting that the physical processes of accretion onto massive black holes have not changed over the bulk of cosmic time.Comment: 15 pages, 7 figures, accepted for publication in A

    Statistical significance of communities in networks

    Full text link
    Nodes in real-world networks are usually organized in local modules. These groups, called communities, are intuitively defined as sub-graphs with a larger density of internal connections than of external links. In this work, we introduce a new measure aimed at quantifying the statistical significance of single communities. Extreme and Order Statistics are used to predict the statistics associated with individual clusters in random graphs. These distributions allows us to define one community significance as the probability that a generic clustering algorithm finds such a group in a random graph. The method is successfully applied in the case of real-world networks for the evaluation of the significance of their communities.Comment: 9 pages, 8 figures, 2 tables. The software to calculate the C-score can be found at http://filrad.homelinux.org/cscor
    corecore