3,474 research outputs found
The use of interactive multi-player games to enhance second language acquisition of both Mandarin and English
MMORPG have become a popular area of language acquisition research, raising the question of whether games and education can be effectively combined to create a game based on research that has education within its core yet still presents as an engaging gaming experience and provides a mutual learning platform for two languages. The current study is longitudinal and focuses on the question: Can interactive RPGs enhance second language acquisition? <br/
RPGs to enhance the second language acquisition of both Mandarin and English
Research Question: “To what degree can it be evidenced that interactive role playing games enhance the mutual second language acquisition of both Mandarin and English?”♦ Small scale side project to ascertain avatar interaction preferences based on perception.♦ Pilot study will apply psycholinguistic and sociolinguistic research knowledge to specifically designed game
Bubble formation at two adjacent submerged orifices in inviscid fluids
A theoretical model has been developed as an extension of single orifice bubble formation to investigate the growth and detachment of vapor/gas bubbles formed at two adjacent submerged orifices in inviscid fluids. The mathematical model treats the two bubbles as an expanding control volume moving to the line of centers above a wall. The movement of the bubbles is obtained by application of force balance acting on the bubble and accounts for surface tension, buoyancy, steam momentum and liquid inertia effects. The liquid inertia effects are determined by applying inviscid and irrotational flow assumptions to allow potential flow theory to calculate the liquid velocity field which then allows the pressure distribution to be calculated. The model is extended to include the mass and energy equations to model the steam bubble formation in sub-cooled water. The theoretical results are compared with the available experimental data of bubble formation during constant mass flow steam bubble formation at two submerged upward facing orifices in sub-cooled water. The model was validated by available experimental data for the growth and detachment processes of two adjacent 1 mm orifices at system pressures of 2 and 3 bars, flow rates of 1.2-4 g/min at sub-cooling of 3.5-35 ºC. The comparisons of theory and experiments indicate that the model successfully predicts the bubbles growth and detachment for the range of conditions studied
A computational fluid dynamics evaluation of a pneumatic safety relief valve
Safety relief valves are well established components preventing catastrophic failure of pressurised systems when non-normal operating conditions occur. However, it is only recently with developments in CFD techniques that the capability to predict the complex flow conditions occurring in the valves has been possible resulting in only limited studies being found in the literature. This paper presents experimental and theoretical investigations applied to a safety relief valve designed for the refrigeration industry but extended here to consider pneumatic systems since air is the compressible fluid. The discharge flow rate and valve forces are determined both theoretically and experimentally for different valve lift conditions and related to the detailed flow conditions (pressure, temperature and Mach number) in the valve predicted by CFD techniques. The CFD code FLUENT has been used with a two dimensional axisymmetric RANS approach using the k-İ turbulent model to predict the highly compressible flow through the valve. The model has been validated by comparison with experimental measurements and the predicted results show good agreement, providing confidence in the use of CFD techniques for valve design and improvement
A generalized Fellner-Schall method for smoothing parameter estimation with application to Tweedie location, scale and shape models
We consider the estimation of smoothing parameters and variance components in
models with a regular log likelihood subject to quadratic penalization of the
model coefficients, via a generalization of the method of Fellner (1986) and
Schall (1991). In particular: (i) we generalize the original method to the case
of penalties that are linear in several smoothing parameters, thereby covering
the important cases of tensor product and adaptive smoothers; (ii) we show why
the method's steps increase the restricted marginal likelihood of the model,
that it tends to converge faster than the EM algorithm, or obvious
accelerations of this, and investigate its relation to Newton optimization;
(iii) we generalize the method to any Fisher regular likelihood. The method
represents a considerable simplification over existing methods of estimating
smoothing parameters in the context of regular likelihoods, without sacrificing
generality: for example, it is only necessary to compute with the same first
and second derivatives of the log-likelihood required for coefficient
estimation, and not with the third or fourth order derivatives required by
alternative approaches. Examples are provided which would have been impossible
or impractical with pre-existing Fellner-Schall methods, along with an example
of a Tweedie location, scale and shape model which would be a challenge for
alternative methods
Comparison of the computed flow field around a bubble growing at an orifice using PIV techniques
For bubbles growing rapidly at orifices, the inertia of the liquid displacement and the resultant liquid flow field contribute to the production of an inertia force which tends to retard bubble movement. It is therefore the purpose of this paper to report on a study to examine the validity of liquid velocity fields predicted by potential flow methods and measurements made using Particle Image Velocimetry (PIV) techniques. Air bubbles are generated in water at atmospheric conditions from a 1 mm diameter orifice. The process is transient and occurs over a period of approximately 80 msecs. Therefore a combination of high speed video techniques and PIV image processing has been used to determine the liquid velocity vector fields during the bubble growth, detachment and translation periods. This paper will present a summary of the experimental techniques and the theoretical model and discuss the results of the study
Electrostatic Field Classifier for Deficient Data
This paper investigates the suitability of recently developed models based on the physical
field phenomena for classification problems with incomplete datasets. An original approach
to exploiting incomplete training data with missing features and labels, involving extensive use
of electrostatic charge analogy, has been proposed. Classification of incomplete patterns has been
investigated using a local dimensionality reduction technique, which aims at exploiting all available
information rather than trying to estimate the missing values. The performance of all proposed
methods has been tested on a number of benchmark datasets for a wide range of missing data scenarios
and compared to the performance of some standard techniques. Several modifications of the
original electrostatic field classifier aiming at improving speed and robustness in higher dimensional
spaces are also discussed
Diagonal and Low-Rank Matrix Decompositions, Correlation Matrices, and Ellipsoid Fitting
In this paper we establish links between, and new results for, three problems
that are not usually considered together. The first is a matrix decomposition
problem that arises in areas such as statistical modeling and signal
processing: given a matrix formed as the sum of an unknown diagonal matrix
and an unknown low rank positive semidefinite matrix, decompose into these
constituents. The second problem we consider is to determine the facial
structure of the set of correlation matrices, a convex set also known as the
elliptope. This convex body, and particularly its facial structure, plays a
role in applications from combinatorial optimization to mathematical finance.
The third problem is a basic geometric question: given points
(where ) determine whether there is a centered
ellipsoid passing \emph{exactly} through all of the points.
We show that in a precise sense these three problems are equivalent.
Furthermore we establish a simple sufficient condition on a subspace that
ensures any positive semidefinite matrix with column space can be
recovered from for any diagonal matrix using a convex
optimization-based heuristic known as minimum trace factor analysis. This
result leads to a new understanding of the structure of rank-deficient
correlation matrices and a simple condition on a set of points that ensures
there is a centered ellipsoid passing through them.Comment: 20 page
X-ray Lighthouses of the High-Redshift Universe. II. Further Snapshot Observations of the Most Luminous z>4 Quasars with Chandra
We report on Chandra observations of a sample of 11 optically luminous
(Mb<-28.5) quasars at z=3.96-4.55 selected from the Palomar Digital Sky Survey
and the Automatic Plate Measuring Facility Survey. These are among the most
luminous z>4 quasars known and hence represent ideal witnesses of the end of
the "dark age ''. Nine quasars are detected by Chandra, with ~2-57 counts in
the observed 0.5-8 keV band. These detections increase the number of X-ray
detected AGN at z>4 to ~90; overall, Chandra has detected ~85% of the
high-redshift quasars observed with snapshot (few kilosecond) observations. PSS
1506+5220, one of the two X-ray undetected quasars, displays a number of
notable features in its rest-frame ultraviolet spectrum, the most prominent
being broad, deep SiIV and CIV absorption lines. The average optical-to-X-ray
spectral index for the present sample (=-1.88+/-0.05) is steeper than
that typically found for z>4 quasars but consistent with the expected value
from the known dependence of this spectral index on quasar luminosity.
We present joint X-ray spectral fitting for a sample of 48 radio-quiet
quasars in the redshift range 3.99-6.28 for which Chandra observations are
available. The X-ray spectrum (~870 counts) is well parameterized by a power
law with Gamma=1.93+0.10/-0.09 in the rest-frame ~2-40 keV band, and a tight
upper limit of N_H~5x10^21 cm^-2 is obtained on any average intrinsic X-ray
absorption. There is no indication of any significant evolution in the X-ray
properties of quasars between redshifts zero and six, suggesting that the
physical processes of accretion onto massive black holes have not changed over
the bulk of cosmic time.Comment: 15 pages, 7 figures, accepted for publication in A
Statistical significance of communities in networks
Nodes in real-world networks are usually organized in local modules. These
groups, called communities, are intuitively defined as sub-graphs with a larger
density of internal connections than of external links. In this work, we
introduce a new measure aimed at quantifying the statistical significance of
single communities. Extreme and Order Statistics are used to predict the
statistics associated with individual clusters in random graphs. These
distributions allows us to define one community significance as the probability
that a generic clustering algorithm finds such a group in a random graph. The
method is successfully applied in the case of real-world networks for the
evaluation of the significance of their communities.Comment: 9 pages, 8 figures, 2 tables. The software to calculate the C-score
can be found at http://filrad.homelinux.org/cscor
- …
