565 research outputs found
The Khwe of Namibia, foragers between game, tourism and politics
__Abstract__
In this paper we examine the plight of the Khwe Bushmen, a group of (former) hunter-gatherers in the
Bwabwata National Park in Northern Namibia. The Khwe have lived for a long time in the area of
Bwabwata, so are highly affected by the park’s conservation activities that altered their environment
seriously. Although they were historically hardly involved in decision making on or the
implementation of such activities, this was supposed to change with the rise of Community-Based
Natural Resource Management (CBNRM) in the 1990s. Yet, many of its aims did not materialize and
the approval of the Kavango Zambezi Transfrontier Conservation Area (KAZA TFCA) in 2011 aimed
at increased conservation in the area. An important element in these plans is to boost ‘green economic’
growth by increasing tourism, also involving the Khwe Bushmen.
As a theoretical starting point, we use Ingold’s dwelling perspective, based on hunter-gatherer
ontologies, in which the world comes into being because an organism/person is continuously
interacting with his/her environment, through bodily activity. Dwelling is contrasted with building, in
which (wo)man constructs the world cognitively before (s)he can live in it. We apply a third notion,
namely lodging, to refer to a situation in which people live in an essentially foreign environment. We
argue that today many changes in the environment of the Khwe are triggered beyond their control,
instead of through their interaction with their environment. In this concept, the environment is
dominant and the people have no option but to adapt to changes in their environment outside their
control.
Using these three notions of dwelling, building and lodging we analyse various conservation
and tourism developments in the environment of the Khwe, historically as well as more recently. In so
doing, we show the transformation of the cultural understanding the people have of their environment,
of their interaction with it (and with the various actors and stakeholders) and with each other
The Immitigable Nature of Assembly Bias: The Impact of Halo Definition on Assembly Bias
Dark matter halo clustering depends not only on halo mass, but also on other
properties such as concentration and shape. This phenomenon is known broadly as
assembly bias. We explore the dependence of assembly bias on halo definition,
parametrized by spherical overdensity parameter, . We summarize the
strength of concentration-, shape-, and spin-dependent halo clustering as a
function of halo mass and halo definition. Concentration-dependent clustering
depends strongly on mass at all . For conventional halo definitions
(), concentration-dependent clustering
at low mass is driven by a population of haloes that is altered through
interactions with neighbouring haloes. Concentration-dependent clustering can
be greatly reduced through a mass-dependent halo definition with for haloes with . Smaller implies larger radii and
mitigates assembly bias at low mass by subsuming altered, so-called backsplash
haloes into now larger host haloes. At higher masses () larger overdensities, , are necessary. Shape- and spin-dependent clustering are
significant for all halo definitions that we explore and exhibit a relatively
weaker mass dependence. Generally, both the strength and the sense of assembly
bias depend on halo definition, varying significantly even among common
definitions. We identify no halo definition that mitigates all manifestations
of assembly bias. A halo definition that mitigates assembly bias based on one
halo property (e.g., concentration) must be mass dependent. The halo
definitions that best mitigate concentration-dependent halo clustering do not
coincide with the expected average splashback radii at fixed halo mass.Comment: 19 pages, 13 figures. Updated to published version. Main result
summarized in Figure 1
Falsification of the instrumental variable conditions in Mendelian randomization studies in the UK Biobank
Mendelian randomization (MR) is an increasingly popular approach to estimating causal effects. Although the assumptions underlying MR cannot be verified, they imply certain constraints, the instrumental inequalities, which can be used to falsify the MR conditions. However, the instrumental inequalities are rarely applied in MR. We aimed to explore whether the instrumental inequalities could detect violations of the MR conditions in case studies analyzing the effect of commonly studied exposures on coronary artery disease risk. Using 1077 single nucleotide polymorphisms (SNPs), we applied the instrumental inequalities to MR models for the effects of vitamin D concentration, alcohol consumption, C-reactive protein (CRP), triglycerides, high-density lipoprotein (HDL) cholesterol, and low-density lipoprotein (LDL) cholesterol on coronary artery disease in the UK Biobank. For their relevant exposure, we applied the instrumental inequalities to MR models proposing each SNP as an instrument individually, and to MR models proposing unweighted allele scores as an instrument. We did not identify any violations of the MR assumptions when proposing each SNP as an instrument individually. When proposing allele scores as instruments, we detected violations of the MR assumptions for 5 of 6 exposures. Within our setting, this suggests the instrumental inequalities can be useful for identifying violations of the MR conditions when proposing multiple SNPs as instruments, but may be less useful in determining which SNPs are not instruments. This work demonstrates how incorporating the instrumental inequalities into MR analyses can help researchers to identify and mitigate potential bias.</p
Application of the Instrumental Inequalities to a Mendelian Randomization Study With Multiple Proposed Instruments
BACKGROUND: Investigators often support the validity of Mendelian randomization (MR) studies, an instrumental variable approach proposing genetic variants as instruments, via. subject matter knowledge. However, the instrumental variable model implies certain inequalities, offering an empirical method of falsifying (but not verifying) the underlying assumptions. Although these inequalities are said to detect only extreme assumptio
Dynamical Boson Stars
The idea of stable, localized bundles of energy has strong appeal as a model
for particles. In the 1950s John Wheeler envisioned such bundles as smooth
configurations of electromagnetic energy that he called {\em geons}, but none
were found. Instead, particle-like solutions were found in the late 1960s with
the addition of a scalar field, and these were given the name {\em boson
stars}. Since then, boson stars find use in a wide variety of models as sources
of dark matter, as black hole mimickers, in simple models of binary systems,
and as a tool in finding black holes in higher dimensions with only a single
killing vector. We discuss important varieties of boson stars, their dynamic
properties, and some of their uses, concentrating on recent efforts.Comment: 79 pages, 25 figures, invited review for Living Reviews in
Relativity; major revision in 201
Influence of NiTi wire diameter on cyclic and torsional fatigue resistance of different heat-treated endodontic instruments
We compared the mechanical properties of 2Shape mini TS2 (Micro-Mega, Besançon, France) obtained from 1.0 diameter nickel-titanium (NiTi) wires and 2Shape TS2 from 1.2 diameter nickel-titanium (NiTi) wires differently thermally treated at room and body temperature. We used 120 NiTi TS2 1.0 and TS2 1.2 files made from controlled memory (CM) wire and T-wire (n = 10). Cyclic fatigue resistance was tested by recording the number of cycles to fracture (NCF) at room and body temperatures using a customized testing device. Maximum torque and angle of rotation at failure were recorded, according to ISO 3630-1. Data were analyzed by a two-way ANOVA (p < 0.05). The CM-wire files had significantly higher NCFs at both temperatures, independent of wire dimensions. Testing at body temperature negatively affected cyclic fatigue of all files. The 1.0-mm diameter T-wire instruments showed higher NCF than the 1.2-mm diameter, whereas no significant differences emerged between the two CM wires at either temperature. The maximum torque was not significantly different across files. The TS2 CM-wire files showed significantly higher angular rotation to fracture than T-wire files. The TS2 CM-wire prototypes showed higher cyclic fatigue resistance than T-wire prototypes, regardless of wire size, exhibiting suitable torsional properties. Torsional behavior appears to not be affected by NiTi wire size
Recommended from our members
Mass calibration of optically selected DES clusters using a measurement of CMB-cluster lensing with SPTpol data
We use cosmic microwave background (CMB) temperature maps from the 500 deg2 SPTpol survey to measure the stacked lensing convergence of galaxy clusters from the Dark Energy Survey (DES) Year-3 redMaPPer (RM) cluster catalog. The lensing signal is extracted through a modified quadratic estimator designed to be unbiased by the thermal Sunyaev-Zel{'}dovich (tSZ) effect. The modified estimator uses a tSZ-free map, constructed from the SPTpol 95 and 150 GHz datasets, to estimate the background CMB gradient. For lensing reconstruction, we employ two versions of the RM catalog: a flux-limited sample containing 4003 clusters and a volume-limited sample with 1741 clusters. We detect lensing at a significance of 8.7 σ (6.7σ) with the flux(volume)-limited sample. By modeling the reconstructed convergence using the Navarro-Frenk-White profile, we find the average lensing masses to be M200m = (1.62 +0.32 −0.25 [stat.] ± 0.04 [sys.]) and (1.28 +0.14 −0.18 [stat.] ±0.03 [sys.])×1014 M⊙for the volume- and flux-limited samples respectively. The systematic error budget is much smaller than the statistical uncertainty and is dominated by the uncertainties in the RM cluster centroids. We use the volume-limited sample to calibrate the normalization of the mass-richness scaling relation, and find a result consistent with the galaxy weak-lensing measurements from DES (Mcclintock et al. 2018)
IllustrisTNG and S2COSMOS: possible conflicts in the evolution of neutral gas and dust
We investigate the evolution in galactic dust mass over cosmic time through (i) empirically derived dust masses using stacked submillimetre fluxes at 850 μm in the COSMOS field and (ii) dust masses derived using a robust post-processing method on the results from the cosmological hydrodynamical simulation IllustrisTNG. We effectively perform a ‘self-calibration’ of the dust mass absorption coefficient by forcing the model and observations to agree at low redshift and then compare the evolution shown by the observations with that predicted by the model. We create dust mass functions (DMFs) based on the IllustrisTNG simulations from 0 < z < 0.5 and compare these with previously observed DMFs. We find a lack of evolution in the DMFs derived from the simulations, in conflict with the rapid evolution seen in empirically derived estimates of the low-redshift DMF. Furthermore, we observe a strong evolution in the observed mean ratio of dust mass to stellar mass of galaxies over the redshift range 0 < z < 5, whereas the corresponding dust masses from IllustrisTNG show relatively little evolution, even after splitting the sample into satellites and centrals. The large discrepancy between the strong observed evolution and the weak evolution predicted by IllustrisTNG plus post-processing may be explained by either strong cosmic evolution in the properties of the dust grains or limitations in the model. In the latter case, the limitation may be connected to previous claims that the neutral gas content of galaxies does not evolve fast enough in IllustrisTNG
- …
