197 research outputs found

    A double-slit `which-way' experiment on the complementarity--uncertainty debate

    Full text link
    A which-way measurement in Young's double-slit will destroy the interference pattern. Bohr claimed this complementarity between wave- and particle behaviour is enforced by Heisenberg's uncertainty principle: distinguishing two positions a distance s apart transfers a random momentum q \sim \hbar/s to the particle. This claim has been subject to debate: Scully et al. asserted that in some situations interference can be destroyed with no momentum transfer, while Storey et al. asserted that Bohr's stance is always valid. We address this issue using the experimental technique of weak measurement. We measure a distribution for q that spreads well beyond [-\hbar/s, \hbar/s], but nevertheless has a variance consistent with zero. This weakvalued momentum-transfer distribution P_{wv}(q) thus reflects both sides of the debate.Comment: 13 pages, 4 figure

    Dark Energy in an Axion Model with Explicit Z(N) Symmetry Breaking

    Full text link
    We point out that a well known axion model with an explicit Z(N) symmetry breaking term predicts both dark energy and cold dark matter. We estimate the parameters of this model which fit the observed densities of the dark components of the universe. We find that the parameters do not conflict with any observations.Comment: 5 pages, minor change

    Measuring measurement--disturbance relationships with weak values

    Get PDF
    Using formal definitions for measurement precision {\epsilon} and disturbance (measurement backaction) {\eta}, Ozawa [Phys. Rev. A 67, 042105 (2003)] has shown that Heisenberg's claimed relation between these quantities is false in general. Here we show that the quantities introduced by Ozawa can be determined experimentally, using no prior knowledge of the measurement under investigation --- both quantities correspond to the root-mean-squared difference given by a weak-valued probability distribution. We propose a simple three-qubit experiment which would illustrate the failure of Heisenberg's measurement--disturbance relation, and the validity of an alternative relation proposed by Ozawa

    A New Perspective on Cosmic Coincidence Problems

    Get PDF
    Cosmological data suggest that we live in an interesting period in the history of the universe when \rho_\Lambda \sim \rho_M \sim \rho_R. The occurence of any epoch with such a "triple coincidence" is puzzling, while the question of why we happen to live during this special epoch is the "Why now?" problem. We introduce a framework which makes the triple coincidence inevitable; furthermore, the ``Why now?'' problem is transformed and greatly ameliorated. The framework assumes that the only relevant mass scales are the electroweak scale, M_{EW}, and the Planck scale, M_{Pl}, and requires \rho_\Lambda^{1/4} \sim M_{EW}^2/M_{Pl} parametrically. Assuming that the true vacuum energy vanishes, we present a simple model where a false vacuum energy yields a cosmological constant of this form.Comment: 5 pages, 1 figure, uses psfig. Refs added, slightly enhance

    Electroweak baryogenesis induced by a scalar field

    Get PDF
    A cosmological pseudoscalar field coupled to hypercharge topological number density can exponentially amplify hyperelectric and hypermagnetic fields while coherently rolling or oscillating, leading to the formation of a time-dependent condensate of topological number density. The topological condensate can be converted, under certain conditions, into baryons in sufficient quantity to explain the observed baryon asymmetry in the universe. The amplified hypermagnetic field can perhaps sufficiently strengthen the electroweak phase transition, and by doing so, save any pre-existing baryon number asymmetry from extinction.Comment: 8 pages, 4 figure

    Electromagnetic Origin of the CMB Anisotropy in String Cosmology

    Get PDF
    In the inflationary scenarios suggested by string theory, the vacuum fluctuations of the electromagnetic field can be amplified by the time-evolution of the dilaton background, and can grow large enough to explain both the origin of the cosmic magnetic fields and of the observed CMB anisotropy. The normalization of the perturbation spectrum is fixed, and implies a relation between the perturbation amplitude at the COBE scale and the spectral index nn. Working within a generic two-parameter family of backgrounds, a large scale anisotropy ΔT/T105\Delta T/T\simeq 10^{-5} is found to correspond to a spectral index in the range n1.111.17n\simeq 1.11 - 1.17.Comment: 11 pages, LATE

    The Uncertainty Relation in "Which-Way" Experiments: How to Observe Directly the Momentum Transfer using Weak Values

    Full text link
    A which-way measurement destroys the twin-slit interference pattern. Bohr argued that distinguishing between two slits a distance s apart gives the particle a random momentum transfer \wp of order h/s. This was accepted for more than 60 years, until Scully, Englert and Walther (SEW) proposed a which-way scheme that, they claimed, entailed no momentum transfer. Storey, Tan, Collett and Walls (STCW) in turn proved a theorem that, they claimed, showed that Bohr was right. This work reviews and extends a recent proposal [Wiseman, Phys. Lett. A 311, 285 (2003)] to resolve the issue using a weak-valued probability distribution for momentum transfer, P_wv(\wp). We show that P_wv(\wp) must be wider than h/6s. However, its moments can still be zero because P_wv(\wp) is not necessarily positive definite. Nevertheless, it is measurable in a way understandable to a classical physicist. We introduce a new measure of spread for P_wv(\wp): half of the unit-confidence interval, and conjecture that it is never less than h/4s. For an idealized example with infinitely narrow slits, the moments of P_wv(\wp) and of the momentum distributions are undefined unless a process of apodization is used. We show that by considering successively smoother initial wave functions, successively more moments of both P_wv(\wp) and the momentum distributions become defined. For this example the moments of P_wv(\wp) are zero, and these are equal to the changes in the moments of the momentum distribution. We prove that this relation holds for schemes in which the moments of P_wv(\wp) are non-zero, but only for the first two moments. We also compare these moments to those of two other momentum-transfer distributions and \hat{p}_f-\hat{p}_i. We find agreement between all of these, but again only for the first two moments.Comment: 14 pages, 6 figures, submitted to J. Opt.

    The Cosmic Microwave Background and Helical Magnetic Fields: the tensor mode

    Full text link
    We study the effect of a possible helicity component of a primordial magnetic field on the tensor part of the cosmic microwave background temperature anisotropies and polarization. We give analytical approximations for the tensor contributions induced by helicity, discussing their amplitude and spectral index in dependence of the power spectrum of the primordial magnetic field. We find that an helical magnetic field creates a parity odd component of gravity waves inducing parity odd polarization signals. However, only if the magnetic field is close to scale invariant and if its helical part is close to maximal, the effect is sufficiently large to be observable. We also discuss the implications of causality on the magnetic field spectrum.Comment: We have corrected a normalisation error which was pointed out to us by Antony Lewis. It enhances our limits on the magnetic fields by (2\pi)^{3/4} ~

    Speculations on Primordial Magnetic Helicity

    Full text link
    We speculate that above or just below the electroweak phase transition magnetic fields are generated which have a net helicity (otherwise said, a Chern-Simons term) of order of magnitude NB+NLN_B + N_L, where NB,LN_{B,L} is the baryon or lepton number today. (To be more precise requires much more knowledge of B,L-generating mechanisms than we currently have.) Electromagnetic helicity generation is associated (indirectly) with the generation of electroweak Chern-Simons number through B+L anomalies. This helicity, which in the early universe is some 30 orders of magnitude greater than what would be expected from fluctuations alone in the absence of B+L violation, should be reasonably well-conserved through the evolution of the universe to around the times of matter dominance and decoupling, because the early universe is an excellent conductor. Possible consequences include early structure formation; macroscopic manifestations of CP violation in the cosmic magnetic field (measurable at least in principle, if not in practice); and an inverse-cascade dynamo mechanism in which magnetic fields and helicity are unstable to transfer to larger and larger spatial scales. We give a quasi-linear treatment of the general-relativistic MHD inverse cascade instability, finding substantial growth for helicity of the assumed magnitude out to scales lMϵ1\sim l_M\epsilon^{-1}, where ϵ\epsilon is roughly the B+L to photon ratio and lMl_M is the magnetic correlation length. We also elaborate further on an earlier proposal of the author for generation of magnetic fields above the EW phase transition.Comment: Latex, 23 page
    corecore