935 research outputs found
First-Order Type Effects in YBaCuO at the Onset of Superconductivity
We present results of Raman scattering experiments on tetragonal for doping levels between 0 and
0.07 holes/CuO. Below the onset of superconductivity at , we find evidence of a diagonal superstructure. At ,
lattice and electron dynamics change discontinuously with the charge and spin
properties being renormalized at all energy scales. The results indicate that
charge ordering is intimately related to the transition at and
that the maximal transition temperature to superconductivity at optimal doping
depends on the type of ordering at .Comment: 4 pages, 4 figure
Spectral signatures of critical charge and spin fluctuations in cuprates
We discuss how Raman spectra of high temperature superconducting cuprates are
affected by nearly-critical spin and charge collective modes, which are coupled
to charge carriers near a stripe quantum critical point. We find that specific
fingerprints of nearly-critical collective modes can be observed and that the
selectivity of Raman spectroscopy in momentum space may be exploited to
distinguish the spin and charge contribution. We apply our results to discuss
the spectra of high-T_c superconducting cuprates finding that the collective
modes should have masses with substantial temperature dependence in agreement
with their nearly critical character. Moreover spin modes have larger masses
and are more diffusive than charge modes indicating that in stripes the charge
is nearly ordered, while spin modes are strongly overdamped and fluctuating
with high frequency.Comment: 6 pages and 3 figures, invited paper to the conference SCES 08,
Buzios/Rio, Brazi
Electron interactions and charge ordering in LaSrCuO
We present results of inelastic light scattering experiments on
single-crystalline LaSrCuO in the doping range and TlBaCuO at and . The main
emphasis is placed on the response of electronic excitations in the
antiferromagnetic phase, in the pseudogap range, in the superconducting state,
and in the essentially normal metallic state at , where no
superconductivity could be observed. In most of the cases we compare B
and B spectra which project out electronic properties close to
and , respectively. In the channel of electron-hole excitations
we find universal behavior in B symmetry as long as the material
exhibits superconductivity at low temperature. In contrast, there is a strong
doping dependence in B symmetry: (i) In the doping range we observe rapid changes of shape and temperature dependence of the
spectra. (ii) In LaSrCuO new structures appear for
which are superposed on the electron-hole continuum. The temperature dependence
as well as model calculations support an interpretation in terms of
charge-ordering fluctuations. For the response from fluctuations
disappears at B and appears at B symmetry in full agreement with
the orientation change of stripes found by neutron scattering. While, with a
grain of salt, the particle-hole continuum is universal for all cuprates the
response from fluctuating charge order in the range is so
far found only in LaSrCuO. We conclude that
LaSrCuO is close to static charge order and, for this reason,
may have a suppressed .Comment: 17 pages, 15 figure
Band and momentum dependent electron dynamics in superconducting as seen via electronic Raman scattering
We present details of carrier properties in high quality single crystals obtained from electronic Raman
scattering. The experiments indicate a strong band and momentum anisotropy of
the electron dynamics above and below the superconducting transition
highlighting the importance of complex band-dependent interactions. The
presence of low energy spectral weight deep in the superconducting state
suggests a gap with accidental nodes which may be lifted by doping and/or
impurity scattering. When combined with other measurements, our observation of
band and momentum dependent carrier dynamics indicate that the iron arsenides
may have several competing superconducting ground states.Comment: 5 pages, 4 figure
Electron-boson glue function derived from electronic Raman scattering
Raman scattering cross sections depend on photon polarization. In the
cuprates nodal and antinodal directions are weighted more strongly in
and symmetry, respectively. On the other hand in angle-resolved
photoemission spectroscopy (ARPES), electronic properties are measured along
well-defined directions in momentum space rather than their weighted averages.
In contrast, the optical conductivity involves a momentum average over the
entire Brillouin zone. Newly measured Raman response data on high-quality
BiSrCaCuO single crystals up to high energies have
been inverted using a modified maximum entropy inversion technique to extract
from and Raman data corresponding electron-boson spectral
densities (glue) are compared to the results obtained with known ARPES and
optical inversions. We find that the spectrum agrees qualitatively
with nodal direction ARPES while the looks more like the optical
spectrum. A large peak around meV in , much less prominent
in , is taken as support for the importance of scattering
at this frequency.Comment: 7 pages, 3 figure
Structural Change in (Economic) Time Series
Methods for detecting structural changes, or change points, in time series
data are widely used in many fields of science and engineering. This chapter
sketches some basic methods for the analysis of structural changes in time
series data. The exposition is confined to retrospective methods for univariate
time series. Several recent methods for dating structural changes are compared
using a time series of oil prices spanning more than 60 years. The methods
broadly agree for the first part of the series up to the mid-1980s, for which
changes are associated with major historical events, but provide somewhat
different solutions thereafter, reflecting a gradual increase in oil prices
that is not well described by a step function. As a further illustration, 1990s
data on the volatility of the Hang Seng stock market index are reanalyzed.Comment: 12 pages, 6 figure
High-field muSR studies of superconducting and magnetic correlations in cuprates above Tc
The advent of high transverse-field muon spin rotation (TF-muSR) has led to
recent muSR investigations of the magnetic-field response of cuprates above the
superconducting transition temperature T_c. Here the results of such
experiments on hole-doped cuprates are reviewed. Although these investigations
are currently ongoing, it is clear that the effects of high field on the
internal magnetic field distribution of these materials is dependent upon a
competition between superconductivity and magnetism. In La_{2-x}Sr_xCuO_4 the
response to the external field above Tc is dominated by heterogeneous spin
magnetism. However, the magnetism that dominates the observed inhomogeneous
line broadening below x ~ 0.19 is overwhelmed by the emergence of a completely
different kind of magnetism in the heavily overdoped regime. The origin of the
magnetism above x ~ 0.19 is currently unknown, but its presence hints at a
competition between superconductivity and magnetism that is reminiscent of the
underdoped regime. In contrast, the width of the internal field distribution of
underdoped YBa_2Cu_3O_y above Tc is observed to track Tc and the density of
superconducting carriers. This observation suggests that the magnetic response
above Tc is not dominated by electronic moments, but rather inhomogeneous
fluctuating superconductivity.Comment: 28 pages, 11 figures, 104 reference
A study of the superconducting gap in RNiBC (R = Y, Lu) single crystals by inelastic light scattering
Superconductivity-induced changes in the electronic Raman scattering response
were observed for the RNiBC (R = Y, Lu) system in different scattering
geometries. In the superconducting state, 2-like peaks were observed in
A, B, and B spectra from single crystals. The peaks in
A and B symmetries are significantly sharper and stronger than
the peak in B symmetry. The temperature dependence of the frequencies of
the 2-like peaks shows typical BCS-type behavior, but the apparent
values of the gap are strongly anisotropic for both systems. In
addition, for both YNiBC and LuNiBC systems, there exists
reproducible scattering strength below the gap which is roughly
linear to the frequency in B and B symmetries. This discovery of
scattering below the gap in non-magnetic borocarbide superconductors, which are
thought to be conventional BCS-type superconductors, is a challenge for current
understanding of superconductivity in this system.Comment: Added text, changed a figure, and added references. Will appear in
Phys. Rev.
Inelastic Light Scattering From Correlated Electrons
Inelastic light scattering is an intensively used tool in the study of
electronic properties of solids. Triggered by the discovery of high temperature
superconductivity in the cuprates and by new developments in instrumentation,
light scattering both in the visible (Raman effect) and the X-ray part of the
electromagnetic spectrum has become a method complementary to optical
(infrared) spectroscopy while providing additional and relevant information.
The main purpose of the review is to position Raman scattering with regard to
single-particle methods like angle-resolved photoemission spectroscopy (ARPES),
and other transport and thermodynamic measurements in correlated materials.
Particular focus will be placed on photon polarizations and the role of
symmetry to elucidate the dynamics of electrons in different regions of the
Brillouin zone. This advantage over conventional transport (usually measuring
averaged properties) indeed provides new insights into anisotropic and complex
many-body behavior of electrons in various systems. We review recent
developments in the theory of electronic Raman scattering in correlated systems
and experimental results in paradigmatic materials such as the A15
superconductors, magnetic and paramagnetic insulators, compounds with competing
orders, as well as the cuprates with high superconducting transition
temperatures. We present an overview of the manifestations of complexity in the
Raman response due to the impact of correlations and developing competing
orders. In a variety of materials we discuss which observations may be
understood and summarize important open questions that pave the way to a
detailed understanding of correlated electron systems.Comment: 62 pages, 48 figures, to appear in Rev. Mod. Phys. High-resolution
pdf file available at http://onceler.uwaterloo.ca/~tpd/RMP.pd
Stripe order and quasiparticle Nernst effect in cuprate superconductors
After a brief review of current ideas on stripe order in cuprate
high-temperature superconductors, we discuss the quasiparticle Nernst effect in
the cuprates, with focus on its evolution in non-superconducting stripe and
related nematic states. In general, we find the Nernst signal to be strongly
enhanced by nearby van-Hove singularities and Lifshitz transitions in the band
structure, implying that phases with translation symmetry breaking often lead
to a large quasiparticle Nernst effect due to the presence of multiple small
Fermi pockets. Open orbits may contribute to the Nernst signal as well, but do
so in a strongly anisotropic fashion. We discuss our results in the light of
recent proposals for a specific Lifshitz transition in underdoped YBCO and make
predictions for the doping dependence of the Nernst signal.Comment: 10 pages, 4 figs, article prepared for a special issue of New J Phy
- …
