25,237 research outputs found

    Absolutely Koszul algebras and the Backelin-Roos property

    Full text link
    We study absolutely Koszul algebras, Koszul algebras with the Backelin-Roos property and their behavior under standard algebraic operations. In particular, we identify some Veronese subrings of polynomial rings that have the Backelin-Roos property and conjecture that the list is indeed complete. Among other things, we prove that every universally Koszul ring defined by monomials has the Backelin-Roos property

    On the cohomological spectrum and support varieties for infinitesimal unipotent supergroup schemes

    Full text link
    We show that if GG is an infinitesimal elementary supergroup scheme of height r\leq r, then the cohomological spectrum G|G| of GG is naturally homeomorphic to the variety Nr(G)\mathcal{N}_r(G) of supergroup homomorphisms ρ:MrG\rho: \mathbb{M}_r \rightarrow G from a certain (non-algebraic) affine supergroup scheme Mr\mathbb{M}_r into GG. In the case r=1r=1, we further identify the cohomological support variety of a finite-dimensional GG-supermodule MM as a subset of N1(G)\mathcal{N}_1(G). We then discuss how our methods, when combined with recently-announced results by Benson, Iyengar, Krause, and Pevtsova, can be applied to extend the homeomorphism Nr(G)G\mathcal{N}_r(G) \cong |G| to arbitrary infinitesimal unipotent supergroup schemes.Comment: Fixed some algebra misidentifications, primarily in Sections 1.3 and 3.3. Simplified the proof of Proposition 3.3.

    Mn valence instability in La2/3Ca1/3MnO3 thin films

    Full text link
    A Mn valence instability on La2/3Ca1/3MnO3 thin films, grown on LaAlO3 (001)substrates is observed by x-ray absorption spectroscopy at the Mn L-edge and O K-edge. As-grown samples, in situ annealed at 800 C in oxygen, exhibit a Curie temperature well below that of the bulk material. Upon air exposure a reduction of the saturation magnetization, MS, of the films is detected. Simultaneously a Mn2+ spectral signature develops, in addition to the expected Mn3+ and Mn4+ contributions, which increases with time. The similarity of the spectral results obtained by total electron yield and fluorescence yield spectroscopy indicates that the location of the Mn valence anomalies is not confined to a narrow surface region of the film, but can extend throughout the whole thickness of the sample. High temperature annealing at 1000 C in air, immediately after growth, improves the magnetic and transport properties of such films towards the bulk values and the Mn2+ signature in the spectra does not appear. The Mn valence is then stable even to prolonged air exposure. We propose a mechanism for the Mn2+ ions formation and discuss the importance of these observations with respect to previous findings and production of thin films devices.Comment: Double space, 21 pages, 6 figure

    Rotating Hele-Shaw cells with ferrofluids

    Full text link
    We investigate the flow of two immiscible, viscous fluids in a rotating Hele-Shaw cell, when one of the fluids is a ferrofluid and an external magnetic field is applied. The interplay between centrifugal and magnetic forces in determining the instability of the fluid-fluid interface is analyzed. The linear stability analysis of the problem shows that a non-uniform, azimuthal magnetic field, applied tangential to the cell, tends to stabilize the interface. We verify that maximum growth rate selection of initial patterns is influenced by the applied field, which tends to decrease the number of interface ripples. We contrast these results with the situation in which a uniform magnetic field is applied normally to the plane defined by the rotating Hele-Shaw cell.Comment: 12 pages, 3 ps figures, RevTe

    Far-infrared edge modes in quantum dots

    Get PDF
    We have investigated edge modes of different multipolarity sustained by quantum dots submitted to external magnetic fields. We present a microscopic description based on a variational solution of the equation of motion for any axially symmetric confining potential and multipole mode. Numerical results for dots with different number of electrons whose ground-state is described within a local Current Density Functional Theory are discussed. Two sum rules, which are exact within this theory, are derived. In the limit of a large neutral dot at B=0, we have shown that the classical hydrodynamic dispersion law for edge waves \omega(q) \sim \sqrt{q \ln (q_0/q)} holds when quantum and finite size effects are taken into account.Comment: We have changed some figures as well as a part of the tex

    Modelling the unfolding pathway of biomolecules: theoretical approach and experimental prospect

    Full text link
    We analyse the unfolding pathway of biomolecules comprising several independent modules in pulling experiments. In a recently proposed model, a critical velocity vcv_{c} has been predicted, such that for pulling speeds v>vcv>v_{c} it is the module at the pulled end that opens first, whereas for v<vcv<v_{c} it is the weakest. Here, we introduce a variant of the model that is closer to the experimental setup, and discuss the robustness of the emergence of the critical velocity and of its dependence on the model parameters. We also propose a possible experiment to test the theoretical predictions of the model, which seems feasible with state-of-art molecular engineering techniques.Comment: Accepted contribution for the Springer Book "Coupled Mathematical Models for Physical and Biological Nanoscale Systems and Their Applications" (proceedings of the BIRS CMM16 Workshop held in Banff, Canada, August 2016), 16 pages, 6 figure

    Far-infrared edge modes in quantum dots

    Get PDF
    We have investigated edge modes of different multipolarity sustained by quantum dots submitted to external magnetic fields. We present a microscopic description based on a variational solution of the equation of motion for any axially symmetric confining potential and multipole mode. Numerical results for dots with different number of electrons whose ground-state is described within a local Current Density Functional Theory are discussed. Two sum rules, which are exact within this theory, are derived. In the limit of a large neutral dot at B=0, we have shown that the classical hydrodynamic dispersion law for edge waves \omega(q) \sim \sqrt{q \ln (q_0/q)} holds when quantum and finite size effects are taken into account.Comment: We have changed some figures as well as a part of the tex

    Enhancing the top signal at Tevatron using Neural Nets

    Get PDF
    We show that Neural Nets can be useful for top analysis at Tevatron. The main features of ttˉt\bar t and background events on a mixed sample are projected in a single output, which controls the efficiency and purity of the ttˉt\bar t signal.Comment: 11 pages, 6 figures (not included and available from the authors), Latex, UB-ECM-PF 94/1

    Fitting in a complex chi^2 landscape using an optimized hypersurface sampling

    Full text link
    Fitting a data set with a parametrized model can be seen geometrically as finding the global minimum of the chi^2 hypersurface, depending on a set of parameters {P_i}. This is usually done using the Levenberg-Marquardt algorithm. The main drawback of this algorithm is that despite of its fast convergence, it can get stuck if the parameters are not initialized close to the final solution. We propose a modification of the Metropolis algorithm introducing a parameter step tuning that optimizes the sampling of parameter space. The ability of the parameter tuning algorithm together with simulated annealing to find the global chi^2 hypersurface minimum, jumping across chi^2{P_i} barriers when necessary, is demonstrated with synthetic functions and with real data
    corecore