21 research outputs found

    Resolving the neural circuits of anxiety

    Get PDF
    Although anxiety disorders represent a major societal problem demanding new therapeutic targets, these efforts have languished in the absence of a mechanistic understanding of this subjective emotional state. While it is impossible to know with certainty the subjective experience of a rodent, rodent models hold promise in dissecting well-conserved limbic circuits. The application of modern approaches in neuroscience has already begun to unmask the neural circuit intricacies underlying anxiety by allowing direct examination of hypotheses drawn from existing psychological concepts. This information points toward an updated conceptual model for what neural circuit perturbations could give rise to pathological anxiety and thereby provides a roadmap for future therapeutic development.National Institute of Diabetes and Digestive and Kidney Diseases (U.S.) (NIH Director’s New Innovator Award DP2-DK-102256-01)National Institute of Mental Health (U.S.) (NIH) R01-MH102441-01)JPB Foundatio

    Regulation and function of MeCP2 Ser421 phosphorylation in U50488-induced conditioned place aversion in mice

    No full text
    Phosphorylation of the methyl DNA-binding protein MeCP2 at Ser421 (pMeCP2-S421) is induced in corticolimbic brain regions during exposure to drugs of abuse and modulates reward-driven behaviors. However, whether pMeCP2-S421 is also involved in behavioral adaptations to aversive drugs is unknown. Our goal was to establish the role and regulation of pMeCP2-S421 in corticolimbic brain regions of mice upon acute treatment with the kappa opioid receptor agonist U50488 and during the expression of U50488-induced conditioned place aversion (CPA). pMeCP2-S421 levels were measured in the nucleus accumbens (NAc), prelimbic cortex, infralimbic cortex (ILC), and basolateral amygdala (BLA) of male mice after intraperitoneal administration of U50488 and upon the expression of U50488-induced CPA. Fos was measured as marker of neural activity in the same brain regions. U50488-induced CPA and Fos levels were compared between knockin (KI) mice that lack pMeCP2-S421 and their wild-type (WT) littermates. U50488 administration acutely induced pMeCP2-S421 and Fos selectively in the NAc but did not alter MeCP2 levels in any brain region. U50488-induced CPA was associated with decreased pMeCP2-S421 in the ILC and BLA and induced Fos in the BLA. MeCP2 KI mice showed CPA indistinguishable from their WT littermates, but they also showed less BLA Fos induction upon CPA. These data are the first to show that pMeCP2-S421 is induced in the brain acutely after U50488 administration but not upon U50488-induced CPA. Although pMeCP2-S421 is not required for U50488-induced CPA, this phosphorylation event may contribute to molecular plasticities in brain regions that govern aversive behaviors

    Increased GABAergic Efficacy of Central Amygdala Projections to Neuropeptide S Neurons in the Brainstem During Fear Memory Retrieval

    No full text
    The canonical view on the central amygdala has evolved from a simple output station towards a highly organized microcircuitry, in which types of GABAergic neurons in centrolateral (CeL) and centromedial (CeM) subnuclei regulate fear expression and generalization. How these specific neuronal populations are connected to extra-amygdaloid target regions remains largely unknown. Here we show in mice that a subpopulation of GABAergic CeL and CeM neurons projects monosynaptically to brainstem neurons expressing neuropeptide S (NPS). The CeL neurons are PKCδ-negative and are activated during conditioned fear. During fear memory retrieval, the efficacy of this GABAergic influence on NPS neurons is enhanced. Moreover, a large proportion of these neurons (~50%) contain prodynorphin and somatostatin, two neuropeptides inhibiting NPS neurons. We conclude that CeL and CeM neurons inhibit NPS neurons in the brainstem by GABA release and that efficacy of this connection is strengthened upon fear memory retrieval. Thereby, this pathway provides a possible feedback mechanism between amygdala and brainstem routes involved in fear and stress coping
    corecore