544 research outputs found
Competition between pairing and ferromagnetic instabilities in ultracold Fermi gases near Feshbach resonances
We study the quench dynamics of a two-component ultracold Fermi gas from the
weak into the strong interaction regime, where the short time dynamics are
governed by the exponential growth rate of unstable collective modes. We obtain
an effective interaction that takes into account both Pauli blocking and the
energy dependence of the scattering amplitude near a Feshbach resonance. Using
this interaction we analyze the competing instabilities towards Stoner
ferromagnetism and pairing.Comment: 4+epsilon pages, 4 figure
Bosons Confined in Optical Lattices: the Numerical Renormalization Group revisited
A Bose-Hubbard model, describing bosons in a harmonic trap with a
superimposed optical lattice, is studied using a fast and accurate variational
technique (MF+NRG): the Gutzwiller mean-field (MF) ansatz is combined with a
Numerical Renormalization Group (NRG) procedure in order to improve on both.
Results are presented for one, two and three dimensions, with particular
attention to the experimentally accessible momentum distribution and possible
satellite peaks in this distribution. In one dimension, a comparison is made
with exact results obtained using Stochastich Series Expansion.Comment: 10 pages, 15 figure
Optimal Monte Carlo Updating
Based on Peskun's theorem it is shown that optimal transition matrices in
Markov chain Monte Carlo should have zero diagonal elements except for the
diagonal element corresponding to the largest weight. We will compare the
statistical efficiency of this sampler to existing algorithms, such as
heat-bath updating and the Metropolis algorithm. We provide numerical results
for the Potts model as an application in classical physics. As an application
in quantum physics we consider the spin 3/2 XY model and the Bose-Hubbard model
which have been simulated by the directed loop algorithm in the stochastic
series expansion framework.Comment: 6 pages, 5 figures, replaced with published versio
Dynamical mean field solution of the Bose-Hubbard model
We present the effective action and self-consistency equations for the
bosonic dynamical mean field (B-DMFT) approximation to the bosonic Hubbard
model and show that it provides remarkably accurate phase diagrams and
correlation functions. To solve the bosonic dynamical mean field equations we
use a continuous-time Monte Carlo method for bosonic impurity models based on a
diagrammatic expansion in the hybridization and condensate coupling. This
method is readily generalized to bosonic mixtures, spinful bosons, and
Bose-Fermi mixtures.Comment: 10 pages, 3 figures. includes supplementary materia
Silent universes with a cosmological constant
We study non-degenerate (Petrov type I) silent universes in the presence of a
non-vanishing cosmological constant L. In contrast to the L=0 case, for which
the orthogonally spatially homogeneous Bianchi type I metrics most likely are
the only admissible metrics, solutions are shown to exist when L is positive.
The general solution is presented for the case where one of the eigenvalues of
the expansion tensor is 0.Comment: 11 pages; several typos corrected which were still present in CGQ
version; minor change
Dynamical mean-field theory for bosons
We discuss the recently developed bosonic dynamical mean-field (B-DMFT)
framework, which maps a bosonic lattice model onto the selfconsistent solution
of a bosonic impurity model with coupling to a reservoir of normal and
condensed bosons. The effective impurity action is derived in several ways: (i)
as an approximation to the kinetic energy functional of the lattice problem,
(ii) using a cavity approach, and (iii) by using an effective medium approach
based on adding a one-loop correction to the selfconsistently defined
condensate. To solve the impurity problem, we use a continuous-time Monte Carlo
algorithm based on a sampling of a perturbation expansion in the hybridization
functions and the condensate wave function. As applications of the formalism we
present finite temperature B-DMFT phase diagrams for the bosonic Hubbard model
on a 3d cubic and 2d square lattice, the condensate order parameter as a
function of chemical potential, critical exponents for the condensate, the
approach to the weakly interacting Bose gas regime for weak repulsions, and the
kinetic energy as a function of temperature.Comment: 26 pages, 19 figure
Minimal tensors and purely electric or magnetic spacetimes of arbitrary dimension
We consider time reversal transformations to obtain twofold orthogonal
splittings of any tensor on a Lorentzian space of arbitrary dimension n.
Applied to the Weyl tensor of a spacetime, this leads to a definition of its
electric and magnetic parts relative to an observer (i.e., a unit timelike
vector field u), in any n. We study the cases where one of these parts vanishes
in particular, i.e., purely electric (PE) or magnetic (PM) spacetimes. We
generalize several results from four to higher dimensions and discuss new
features of higher dimensions. We prove that the only permitted Weyl types are
G, I_i and D, and discuss the possible relation of u with the WANDs; we provide
invariant conditions that characterize PE/PM spacetimes, such as Bel-Debever
criteria, or constraints on scalar invariants, and connect the PE/PM parts to
the kinematic quantities of u; we present conditions under which direct product
spacetimes (and certain warps) are PE/PM, which enables us to construct
explicit examples. In particular, it is also shown that all static spacetimes
are necessarily PE, while stationary spacetimes (e.g., spinning black holes)
are in general neither PE nor PM. Ample classes of PE spacetimes exist, but PM
solutions are elusive, and we prove that PM Einstein spacetimes of type D do
not exist, for any n. Finally, we derive corresponding results for the
electric/magnetic parts of the Riemann tensor. This also leads to first
examples of PM spacetimes in higher dimensions. We also note in passing that
PE/PM Weyl tensors provide examples of minimal tensors, and we make the
connection hereof with the recently proved alignment theorem. This in turn
sheds new light on classification of the Weyl tensors based on null alignment,
providing a further invariant characterization that distinguishes the types
G/I/D from the types II/III/N.Comment: 43 pages. v2: new proposition 4.10; some text reshuffled (former sec.
2 is now an appendix); references added; some footnotes cancelled, others
incorporated into the main text; some typos fixed and a few more minor
changes mad
Voriconazole Treatment for Subacute Invasive and Chronic Pulmonary Aspergillosis
Backround: Voriconazole is a novel triazole antifungal with a broad spectrum including Aspergillus species. We conducted an open, noncomparative multicenter study to evaluate the efficacy and safety of voriconazole in subacute invasive and chronic pulmonary aspergillosis (CPA). Methods: Patients without profound neutropenia and a proven or probable diagnosis of subacute invasive aspergillosis (IA) or CPA received voriconazole 200 mg twice daily for a period of 4-24 weeks as primary or salvage therapy. Dose escalation was allowed if efficacy was suboptimal, and toleration and safety were satisfactory. Response was assessed by clinical, radiological and mycological changes. A complete or partial response in subacute IA and improved or stable in CPA were assessed as favorable responses. Results: Of 39 patients treated, 36 were assessable. The majority of patients had subacute IA (n = 21), proven in all 11 extra-pulmonary and in 23/25 (92%) of the pulmonary cases. Voriconazole was given as primary therapy in 22 (61%). All patients receiving salvage therapy (n = 14) had refractory IA, having failed itraconazole or amphotericin B (AmB) or both. Overall, a complete or partial response was seen in 9/21(43%) of subacute IA and improved or stable in 12/15 (80%) of those with CPA. Adverse events, mainly liver function test abnormalities, skin reactions, and visual disturbances were mild and transient, leading to early discontinuation of treatment in 5 cases. Conclusions: In patients with subacute IA and CPA, voriconazole was efficacious as salvage or primary therapy. © 2006 Elsevier Inc. All rights reserved
Improved efficacy of ciprofloxacin administered in polyethylene glycol-coated liposomes for treatment of Klebsiella pneumoniae pneumonia in rats.
Animal and clinical data show that high ratios of the area under the
concentration-time curve and the peak concentration in blood to the MIC of
fluoroquinolones for a given pathogen are associated with a favorable
outcome. The present study investigated whether improvement of the
therapeutic potential of ciprofloxacin could be achieved by encapsulation
in polyethylene glycol (PEG)-coated long-circulating sustained-release
liposomes. In a rat model of unilateral Klebsiella pneumoniae pneumonia
(MIC = 0.1 microg/ml), antibiotic was administered at 12- or 24-h
intervals at twofold-increasing doses. A treatment period of 3 days was
started 24 h after inoculation of the left lung, when the bacterial count
had increased 1,000-fold and some rats had positive blood cultures. The
infection was fatal within 5 days in untreated rats. Administration of
ciprofloxacin in the liposomal form resulted in delayed ciprofloxacin
clearance and increased and prolonged ciprofloxacin concentrations in
blood and tissues. The ED(50) (dosage that results in 50% survival) of
liposomal ciprofloxacin was 3.3 mg/kg of body weight/day given once daily,
and that of free ciprofloxacin was 18.9 mg/kg/day once daily or 5.1
mg/kg/day twice daily. The ED(90) of liposomal ciprofloxacin was 15.0
mg/kg/day once daily compared with 36.0 mg/kg/day twice daily for free
ciprofloxacin; 90% survival could not be achieved with free ciprofloxacin
given once daily. In summary, the therapeutic efficacy of liposomal
ciprofloxacin was superior to that of ciprofloxacin in the free form.
PEG-coated liposomal ciprofloxacin was well tolerated in relatively high
doses, permitting once daily administration with relatively low
ciprofloxacin clearance and without compromising therapeutic efficacy
- …
