1,403 research outputs found
Nuclear dipole polarizability from mean-field modeling constrained by chiral effective field theory
We construct a new Skyrme interaction Skm by fitting the equation
of state and nucleon effective masses in asymmetric nuclear matter from chiral
two- and three-body forces as well as the binding energies of finite nuclei.
Employing this interaction to study the electric dipole polarizabilities of
Ca, Ni, Sn, and Pb in the random-phase
approximation, we find that the theoretical predictions are in good agreement
with experimentally measured values without additional fine tuning of the
Skyrme interaction, thus confirming the usefulness of the new Skyrme
interaction in studying the properties of nuclei. We further use this
interaction to study the neutron skin thicknesses of Ca and Pb,
and they are found to be consistent with the experimental data.Comment: Significantly revised, 7 pages, 4 figures. Published version in PL
Probing the equation of state of neutron-rich matter with intermediate energy heavy-ion collisions
Nuclear reactions induced by stable and/or radioactive neutron-rich nuclei
provide the opportunity to pin down the equation of state of neutron-rich
matter, especially the density () dependence of its isospin-dependent
part, i.e., the nuclear symmetry energy . A conservative
constraint, , around the nuclear matter saturation density has
recently been obtained from the isospin diffusion data in intermediate energy
heavy-ion collisions. We review this exciting result and discuss its
consequences and implications on nuclear effective interactions, radii and
cooling mechanisms of neutron stars.Comment: 10 pages. Invited talks at (1) International Workshop on Nuclear
Multifragmentation, Nov. 28-Dec. 1, 2005, Catania, Italy and (2) XXIX
Symposium on Nuclear Physics, Jan. 3-6, 2006, Cocoyoc, Morelos, Mexic
Nuclear matter symmetry energy and the neutron skin thickness of heavy nuclei
Correlations between the thickness of the neutron skin in finite nuclei and
the nuclear matter symmetry energy are studied in the Skyrme Hartree-Fock
model. From the most recent analysis of the isospin diffusion data in heavy-ion
collisions based on an isospin- and momentum-dependent transport model with
in-medium nucleon-nucleon cross sections, a value of MeV for the
slope of the nuclear symmetry energy at saturation density is extracted, and
this imposes stringent constraints on both the parameters in the Skyrme
effective interactions and the neutron skin thickness of heavy nuclei.
Predicted thickness of the neutron skin is fm for Pb,
fm for Sn, and fm for Sn.Comment: 6 pages, 4 figures, 1 table, revised version, to appear in PR
Constraining the Skyrme effective interactions and the neutron skin thickness of nuclei using isospin diffusion data from heavy ion collisions
Recent analysis of the isospin diffusion data from heavy-ion collisions based
on an isospin- and momentum-dependent transport model with in-medium
nucleon-nucleon cross sections has led to the extraction of a value of MeV for the slope of the nuclear symmetry energy at saturation density.
This imposes stringent constraints on both the parameters in the Skyrme
effective interactions and the neutron skin thickness of heavy nuclei. Among
the 21 sets of Skyrme interactions commonly used in nuclear structure studies,
the 4 sets SIV, SV, G, and R are found to give values
that are consistent with the extracted one. Further study on the correlations
between the thickness of the neutron skin in finite nuclei and the nuclear
matter symmetry energy in the Skyrme Hartree-Fock approach leads to predicted
thickness of the neutron skin of fm for Pb, fm for Sn, and fm for Sn.Comment: 10 pages, 4 figures, 1 Table, Talk given at 1) International
Conference on Nuclear Structure Physics, Shanghai, 12-17 June, 2006; 2) 11th
China National Nuclear Structure Physics Conference, Changchun, Jilin, 13-18
July, 200
Determination of the stiffness of the nuclear symmetry energy from isospin diffusion
With an isospin- and momentum-dependent transport model, we find that the
degree of isospin diffusion in heavy ion collisions at intermediate energies is
affected by both the stiffness of the nuclear symmetry energy and the momentum
dependence of the nucleon potential. Using a momentum dependence derived from
the Gogny effective interaction, recent experimental data from NSCL/MSU on
isospin diffusion are shown to be consistent with a nuclear symmetry energy
given by at
subnormal densities. This leads to a significantly constrained value of about
-550 MeV for the isospin-dependent part of the isobaric incompressibility of
isospin asymmetric nuclear matter.Comment: 4 pages, 4 figures, 1 table, revised version, to appear in PR
Effect of symmetry energy on two-nucleon correlation functions in heavy-ion collisions induced by neutron-rich nuclei
Using an isospin-dependent transport model, we study the effects of nuclear
symmetry energy on two-nucleon correlation functions in heavy ion collisions
induced by neutron-rich nuclei. We find that the density dependence of the
nuclear symmetry energy affects significantly the nucleon emission times in
these collisions, leading to larger values of two-nucleon correlation functions
for a symmetry energy that has a stronger density dependence. Two-nucleon
correlation functions are thus useful tools for extracting information about
the nuclear symmetry energy from heavy ion collisions.Comment: Revised version, to appear in Phys. Rev. Let
Equation of state of the hot dense matter in a multi-phase transport model
Within the framework of a multi-phase transport model, we study the equation
of state and pressure anisotropy of the hot dense matter produced in central
relativistic heavy ion collisions. Both are found to depend on the
hadronization scheme and scattering cross sections used in the model.
Furthermore, only partial thermalization is achieved in the produced matter as
a result of its fast expansion
A Multi-Phase Transport Model for Relativistic Heavy Ion Collisions
We describe in detail how the different components of a multi-phase transport
(AMPT) model, that uses the Heavy Ion Jet Interaction Generator (HIJING) for
generating the initial conditions, Zhang's Parton Cascade (ZPC) for modeling
partonic scatterings, the Lund string fragmentation model or a quark
coalescence model for hadronization, and A Relativistic Transport (ART) model
for treating hadronic scatterings, are improved and combined to give a coherent
description of the dynamics of relativistic heavy ion collisions. We also
explain the way parameters in the model are determined, and discuss the
sensitivity of predicted results to physical input in the model. Comparisons of
these results to experimental data, mainly from heavy ion collisions at the
Relativistic Heavy Ion Collider (RHIC), are then made in order to extract
information on the properties of the hot dense matter formed in these
collisions.Comment: 33 pages, 38 figures, revtex. Added 9 figures, version published in
Phys. Rev. C. The full source code of the AMPT model in the Fortran 77
language and instructions for users are available from the EPAPS ftp site
(ftp://ftp.aip.org/epaps/phys_rev_c/E-PRVCAN-72-781512/) and the OSCAR
website (http://www-cunuke.phys.columbia.edu/OSCAR/
Transport theories for heavy ion collisions in the 1 AGeV regime
We compare multiplicities as well as rapidity and transverse momentum distributions of protons, pions and kaons calculated within presently available transport approaches for heavy ion collisions around 1 AGeV. For this purpose, three reactions have been selected: Au+Au at 1 and 1.48 AGeV and Ni+Ni at 1.93 AGeV
- …
