780 research outputs found

    The Initial Core Mass Function due to Ambipolar Diffusion in Molecular Clouds

    Full text link
    We show that the ambipolar-diffusion--initiated fragmentation of molecular clouds leads simply and naturally to an initial core mass function (CMF) which is very similar to the initial stellar mass function (IMF) and in excellent agreement with existing observations. This agreement is robust provided that the three (input) free parameters remain within their range of values suggested by observations. Other, observationally testable, predictions are made.Comment: 5 pages, 4 figures, accepted by MNRAS-

    MERAV: a tool for comparing gene expression across human tissues and cell types

    Get PDF
    The oncogenic transformation of normal cells into malignant, rapidly proliferating cells requires major alterations in cell physiology. For example, the transformed cells remodel their metabolic processes to supply the additional demand for cellular building blocks. We have recently demonstrated essential metabolic processes in tumor progression through the development of a methodological analysis of gene expression. Here, we present the Metabolic gEne RApid Visualizer (MERAV, http://merav.wi.mit.edu), a web-based tool that can query a database comprising ∼4300 microarrays, representing human gene expression in normal tissues, cancer cell lines and primary tumors. MERAV has been designed as a powerful tool for whole genome analysis which offers multiple advantages: one can search many genes in parallel; compare gene expression among different tissue types as well as between normal and cancer cells; download raw data; and generate heatmaps; and finally, use its internal statistical tool. Most importantly, MERAV has been designed as a unique tool for analyzing metabolic processes as it includes matrixes specifically focused on metabolic genes and is linked to the Kyoto Encyclopedia of Genes and Genomes pathway search.United States. National Institutes of Health (CA103866)United States. National Institutes of Health (AI47389)Life Sciences Research FoundationMassachusetts Institute of Technology. Ludwig Center for Molecular OncologyHoward Hughes Medical Institut

    Adaptation of Mesoscale Weather Models to Local Forecasting

    Get PDF
    Methodologies have been developed for (1) configuring mesoscale numerical weather-prediction models for execution on high-performance computer workstations to make short-range weather forecasts for the vicinity of the Kennedy Space Center (KSC) and the Cape Canaveral Air Force Station (CCAFS) and (2) evaluating the performances of the models as configured. These methodologies have been implemented as part of a continuing effort to improve weather forecasting in support of operations of the U.S. space program. The models, methodologies, and results of the evaluations also have potential value for commercial users who could benefit from tailoring their operations and/or marketing strategies based on accurate predictions of local weather. More specifically, the purpose of developing the methodologies for configuring the models to run on computers at KSC and CCAFS is to provide accurate forecasts of winds, temperature, and such specific thunderstorm-related phenomena as lightning and precipitation. The purpose of developing the evaluation methodologies is to maximize the utility of the models by providing users with assessments of the capabilities and limitations of the models. The models used in this effort thus far include the Mesoscale Atmospheric Simulation System (MASS), the Regional Atmospheric Modeling System (RAMS), and the National Centers for Environmental Prediction Eta Model ( Eta for short). The configuration of the MASS and RAMS is designed to run the models at very high spatial resolution and incorporate local data to resolve fine-scale weather features. Model preprocessors were modified to incorporate surface, ship, buoy, and rawinsonde data as well as data from local wind towers, wind profilers, and conventional or Doppler radars. The overall evaluation of the MASS, Eta, and RAMS was designed to assess the utility of these mesoscale models for satisfying the weather-forecasting needs of the U.S. space program. The evaluation methodology includes objective and subjective verification methodologies. Objective (e.g., statistical) verification of point forecasts is a stringent measure of model performance, but when used alone, it is not usually sufficient for quantifying the value of the overall contribution of the model to the weather-forecasting process. This is especially true for mesoscale models with enhanced spatial and temporal resolution that may be capable of predicting meteorologically consistent, though not necessarily accurate, fine-scale weather phenomena. Therefore, subjective (phenomenological) evaluation, focusing on selected case studies and specific weather features, such as sea breezes and precipitation, has been performed to help quantify the added value that cannot be inferred solely from objective evaluation

    Heterogeneity of Nicotinic Receptor Class and Subunit mRNA Expression among Individual Parasympathetic Neurons from Rat Intracardiac Ganglia

    Get PDF
    Neurons have the potential to form thousands of distinct neuronal nicotinic receptors from the eight alpha and three beta subunits that currently are known. In an effort to determine how much of this potential complexity is realized among individual neurons, we examined the nicotinic pharmacological and biophysical properties and receptor subunit mRNA expression patterns in individual neurons cultured from rat epicardial ganglia. Analysis of the whole-cell pharmacology of these neurons showed a diversity of responses to the agonists acetylcholine, nicotine, cytisine, and 1,1-dimethyl-4-phenylpiperazinium, suggesting that a heterogeneous population of nicotinic receptor classes, or subtypes, is expressed by individual neurons. Single-channel analysis demonstrated three distinct conductances (18, 24, and 31 pS), with patches from different neurons containing different combinations of these channel classes. We used single-cell RT-PCR to examine nicotinic acetylcholine receptor (nAChR) subunit mRNA expression by individual neurons. Although mRNAs encoding all eight neuronal nAChR subunits for which we probed (alpha 2-alpha 5, alpha 7, beta 2-beta 4) were present in multicellular cultures, we found that individual epicardial neurons express distinct subsets of these nAChR subunit mRNAs. These results suggest that individual epicardial neurons express distinct arrays of nAChR subunits and that these subunits may assemble into functional receptors with distinct and variable subunit composition. This variable receptor subunit expression provides an explanation for the diversity of pharmacological and single-channel responses we have observed in individual neurons

    A history of junior colleges in Oklahoma /

    Get PDF

    Machine Learning Evidence: Admissibility and Weight

    Get PDF

    Countering the Threat of Bioterrorism in Iowa

    Get PDF
    One of the basic tenets of plant biosecurity is that the presence, actual or predicted distribution, intensity, and economic impact of any yield-reducing factor(s) must be known. The development of a real-time, GIS-based (geographic information system) reporting system for new and emerging agricultural pathogens and pests is extremely relevant in the era of agricultural bioterrorism. The goal is to establish a real-time, GIS database network to report, monitor, map (temporally and spatially), and predict the spread of new and emerging plant diseases and pests. This database network can also be used to geospatially and temporally monitor endemic pathogens/pests. Diagnostic records from the Regional Diagnostic Centers coupled with remote sensing, GIS, GPS, atmospheric transport models, and weather-based GIS risk prediction models, offers an integrated system of technologies to help ensure the production of a safe and affordable US food supply
    corecore