326 research outputs found
New Discrete Basis for Nuclear Structure Studies
A complete discrete set of spherical single-particle wave functions for
studies of weakly-bound many-body systems is proposed. The new basis is
obtained by means of a local-scale point transformation of the spherical
harmonic oscillator wave functions. Unlike the harmonic oscillator states, the
new wave functions decay exponentially at large distances. Using the new basis,
characteristics of weakly-bound orbitals are analyzed and the ground state
properties of some spherical doubly-magic nuclei are studied. The basis of the
transformed harmonic oscillator is a significant improvement over the harmonic
oscillator basis, especially in studies of exotic nuclei where the coupling to
the particle continuum is important.Comment: 13 pages, RevTex, 6 p.s. figures, submitted to Phys. Rev.
Space-Time Evolution of the Oscillator, Rapidly moving in a random media
We study the quantum-mechanical evolution of the nonrelativistic oscillator,
rapidly moving in the media with the random vector fields. We calculate the
evolution of the level probability distribution as a function of time, and
obtain rapid level diffusion over the energy levels. Our results imply a new
mechanism of charmonium dissociation in QCD media.Comment: 32 pages, 13 figure
Quasi-normal frequencies: Key analytic results
The study of exact quasi-normal modes [QNMs], and their associated
quasi-normal frequencies [QNFs], has had a long and convoluted history -
replete with many rediscoveries of previously known results. In this article we
shall collect and survey a number of known analytic results, and develop
several new analytic results - specifically we shall provide several new QNF
results and estimates, in a form amenable for comparison with the extant
literature. Apart from their intrinsic interest, these exact and approximate
results serve as a backdrop and a consistency check on ongoing efforts to find
general model-independent estimates for QNFs, and general model-independent
bounds on transmission probabilities. Our calculations also provide yet another
physics application of the Lambert W function. These ideas have relevance to
fields as diverse as black hole physics, (where they are related to the damped
oscillations of astrophysical black holes, to greybody factors for the Hawking
radiation, and to more speculative state-counting models for the Bekenstein
entropy), to quantum field theory (where they are related to Casimir energies
in unbounded systems), through to condensed matter physics, (where one may
literally be interested in an electron tunelling through a physical barrier).Comment: V1: 29 pages; V2: Reformatted, 31 pages. Title changed to reflect
major additions and revisions. Now describes exact QNFs for the double-delta
potential in terms of the Lambert W function. V3: Minor edits for clarity.
Four references added. No physics changes. Still 31 page
Dirty black holes: Quasinormal modes for "squeezed" horizons
We consider the quasinormal modes for a class of black hole spacetimes that,
informally speaking, contain a closely ``squeezed'' pair of horizons. (This
scenario, where the relevant observer is presumed to be ``trapped'' between the
horizons, is operationally distinct from near-extremal black holes with an
external observer.) It is shown, by analytical means, that the spacing of the
quasinormal frequencies equals the surface gravity at the squeezed horizons.
Moreover, we can calculate the real part of these frequencies provided that the
horizons are sufficiently close together (but not necessarily degenerate or
even ``nearly degenerate''). The novelty of our analysis (which extends a
model-specific treatment by Cardoso and Lemos) is that we consider ``dirty''
black holes; that is, the observable portion of the (static and spherically
symmetric) spacetime is allowed to contain an arbitrary distribution of matter.Comment: 15 pages, uses iopart.cls and setstack.sty V2: Two references added.
Also, the appendix now relates our computation of the Regge-Wheeler potential
for gravity in a generic "dirty" black hole to the results of Karlovini
[gr-qc/0111066
Infrastructure for Detector Research and Development towards the International Linear Collider
The EUDET-project was launched to create an infrastructure for developing and
testing new and advanced detector technologies to be used at a future linear
collider. The aim was to make possible experimentation and analysis of data for
institutes, which otherwise could not be realized due to lack of resources. The
infrastructure comprised an analysis and software network, and instrumentation
infrastructures for tracking detectors as well as for calorimetry.Comment: 54 pages, 48 picture
QGP Theory: Status and Perspectives
The current status of Quark-Gluon-Plasma Theory is reviewed. Special emphasis
is placed on QGP signatures, the interpretation of current data and what to
expect from RHIC in the near future.Comment: 20 pages, invited overview talk at the 4th International Conference
on the Physcis and Astrophysics of the Quark-Gluon-Plasma, November 2001,
Jaipur, India, to appear in Praman
Differential (2+1) Jet Event Rates and Determination of alpha_s in Deep Inelastic Scattering at HERA
Events with a (2+1) jet topology in deep-inelastic scattering at HERA are
studied in the kinematic range 200 < Q^2< 10,000 GeV^2. The rate of (2+1) jet
events has been determined with the modified JADE jet algorithm as a function
of the jet resolution parameter and is compared with the predictions of Monte
Carlo models. In addition, the event rate is corrected for both hadronization
and detector effects and is compared with next-to-leading order QCD
calculations. A value of the strong coupling constant of alpha_s(M_Z^2)=
0.118+- 0.002 (stat.)^(+0.007)_(-0.008) (syst.)^(+0.007)_(-0.006) (theory) is
extracted. The systematic error includes uncertainties in the calorimeter
energy calibration, in the description of the data by current Monte Carlo
models, and in the knowledge of the parton densities. The theoretical error is
dominated by the renormalization scale ambiguity.Comment: 25 pages, 6 figures, 3 tables, submitted to Eur. Phys.
Multi-Jet Event Rates in Deep Inelastic Scattering and Determination of the Strong Coupling Constant
Jet event rates in deep inelastic ep scattering at HERA are investigated
applying the modified JADE jet algorithm. The analysis uses data taken with the
H1 detector in 1994 and 1995. The data are corrected for detector and
hadronization effects and then compared with perturbative QCD predictions using
next-to-leading order calculations. The strong coupling constant alpha_S(M_Z^2)
is determined evaluating the jet event rates. Values of alpha_S(Q^2) are
extracted in four different bins of the negative squared momentum
transfer~\qq in the range from 40 GeV2 to 4000 GeV2. A combined fit of the
renormalization group equation to these several alpha_S(Q^2) values results in
alpha_S(M_Z^2) = 0.117+-0.003(stat)+0.009-0.013(syst)+0.006(jet algorithm).Comment: 17 pages, 4 figures, 3 tables, this version to appear in Eur. Phys.
J.; it replaces first posted hep-ex/9807019 which had incorrect figure 4
Multiplicity Structure of the Hadronic Final State in Diffractive Deep-Inelastic Scattering at HERA
The multiplicity structure of the hadronic system X produced in
deep-inelastic processes at HERA of the type ep -> eXY, where Y is a hadronic
system with mass M_Y< 1.6 GeV and where the squared momentum transfer at the pY
vertex, t, is limited to |t|<1 GeV^2, is studied as a function of the invariant
mass M_X of the system X. Results are presented on multiplicity distributions
and multiplicity moments, rapidity spectra and forward-backward correlations in
the centre-of-mass system of X. The data are compared to results in e+e-
annihilation, fixed-target lepton-nucleon collisions, hadro-produced
diffractive final states and to non-diffractive hadron-hadron collisions. The
comparison suggests a production mechanism of virtual photon dissociation which
involves a mixture of partonic states and a significant gluon content. The data
are well described by a model, based on a QCD-Regge analysis of the diffractive
structure function, which assumes a large hard gluonic component of the
colourless exchange at low Q^2. A model with soft colour interactions is also
successful.Comment: 22 pages, 4 figures, submitted to Eur. Phys. J., error in first
submission - omitted bibliograph
Forward pi^0 Production and Associated Transverse Energy Flow in Deep-Inelastic Scattering at HERA
Deep-inelastic positron-proton interactions at low values of Bjorken-x down
to x \approx 4.10^-5 which give rise to high transverse momentum pi^0 mesons
are studied with the H1 experiment at HERA. The inclusive cross section for
pi^0 mesons produced at small angles with respect to the proton remnant (the
forward region) is presented as a function of the transverse momentum and
energy of the pi^0 and of the four-momentum transfer Q^2 and Bjorken-x.
Measurements are also presented of the transverse energy flow in events
containing a forward pi^0 meson. Hadronic final state calculations based on QCD
models implementing different parton evolution schemes are confronted with the
data.Comment: 27 pages, 8 figures and 3 table
- …
