3,470 research outputs found

    Transfer molding of PMR-15 polyimide resin

    Get PDF
    Transfer molding is an economically viable method of producing small shapes of PMR-15 polyimide. It is shown that with regard to flexural, compressive, and tribological properties transfer-molded PMR-15 polyimide is essentially equivalent to PMR-15 polyimide produced by the more common method of compression molding. Minor variations in anisotropy are predictable effects of molding design and secondary finishing operations

    Cash Crop and Foodgrain Productivity in Senegal: Historical View, New Survey Evidence, and Policy Implications

    Get PDF
    Crop Production/Industries, Productivity Analysis, Downloads July 2008 - June 2009: 10,

    Approximate analysis and stability of pressure oscillations in ramjets

    Get PDF
    This paper summarizes work accomplished during the past five years on analysis of stability related to recent experimental results on combustion instabilities in dump combustors. The primary purpose is to provide the information in a form useful to those concerned with design and development of operational systems. Thus most substantial details are omitted; the material is presented in a qualitative fashion

    Optimal Pacing for Running 400 m and 800 m Track Races

    Full text link
    Physicists seeking to understand complex biological systems often find it rewarding to create simple "toy models" that reproduce system behavior. Here a toy model is used to understand a puzzling phenomenon from the sport of track and field. Races are almost always won, and records set, in 400 m and 800 m running events by people who run the first half of the race faster than the second half, which is not true of shorter races, nor of longer. There is general agreement that performance in the 400 m and 800 m is limited somehow by the amount of anaerobic metabolism that can be tolerated in the working muscles in the legs. A toy model of anaerobic metabolism is presented, from which an optimal pacing strategy is analytically calculated via the Euler-Lagrange equation. This optimal strategy is then modified to account for the fact that the runner starts the race from rest; this modification is shown to result in the best possible outcome by use of an elementary variational technique that supplements what is found in undergraduate textbooks. The toy model reproduces the pacing strategies of elite 400 m and 800 m runners better than existing models do. The toy model also gives some insight into training strategies that improve performance.Comment: 14 pages, 4 figures, submitted to the American Journal of Physic
    corecore