1,599 research outputs found

    Free initial wave packets and the long-time behavior of the survival and nonescape probabilities

    Full text link
    The behavior of both the survival S(t) and nonescape P(t) probabilities at long times for the one-dimensional free particle system is shown to be closely connected to that of the initial wave packet at small momentum. We prove that both S(t) and P(t) asymptotically exhibit the same power-law decrease at long times, when the initial wave packet in momentum representation behaves as O(1) or O(k) at small momentum. On the other hand, if the integer m becomes greater than 1, S(t) and P(t) decrease in different power-laws at long times.Comment: 4 pages, 3 figures, Title and organization changed, however the results not changed, To appear in Phys. Rev.

    Noise-robust method for image segmentation

    Get PDF
    Segmentation of noisy images is one of the most challenging problems in image analysis and any improvement of segmentation methods can highly influence the performance of many image processing applications. In automated image segmentation, the fuzzy c-means (FCM) clustering has been widely used because of its ability to model uncertainty within the data, applicability to multi-modal data and fairly robust behaviour. However, the standard FCM algorithm does not consider any information about the spatial linage context and is highly sensitive to noise and other imaging artefacts. Considering above mentioned problems, we developed a new FCM-based approach for the noise-robust fuzzy clustering and we present it in this paper. In this new iterative algorithm we incorporated both spatial and feature space information into the similarity measure and the membership function. We considered that spatial information depends on the relative location and features of the neighbouring pixels. The performance of the proposed algorithm is tested on synthetic image with different noise levels and real images. Experimental quantitative and qualitative segmentation results show that our method efficiently preserves the homogeneity of the regions and is more robust to noise than other FCM-based methods

    Standard and derived Planck quantities: selected analysis and derivations

    Full text link
    We provide an overview of the fundamental units of physical quantities determined naturally by the values of fundamental constants of nature. We discuss a comparison between the 'Planck units', now widely used in theoretical physics and the pre-quantum 'Stoney units' in which, instead of the Planck constant, the charge of the electron is used with very similar quantitative results. We discuss some of the physical motivation for these special units, attributed much after they were introduced, and also put forth a summary of the arguments supporting various cases for making specific physical interpretations of the meanings of some of these units. The new aspects we discuss are a possible physical basis for the Stoney units, their link to the Planck units, and also the importance of Planck units for thermodynamical quantities in the context of quantum gravity.Comment: 22 pages, 1 tabl

    The various power decays of the survival probability at long times for free quantum particle

    Get PDF
    The long time behaviour of the survival probability of initial state and its dependence on the initial states are considered, for the one dimensional free quantum particle. We derive the asymptotic expansion of the time evolution operator at long times, in terms of the integral operators. This enables us to obtain the asymptotic formula for the survival probability of the initial state ψ(x)\psi (x), which is assumed to decrease sufficiently rapidly at large x|x|. We then show that the behaviour of the survival probability at long times is determined by that of the initial state ψ\psi at zero momentum k=0k=0. Indeed, it is proved that the survival probability can exhibit the various power-decays like t2m1t^{-2m-1} for an arbitrary non-negative integers mm as tt \to \infty , corresponding to the initial states with the condition ψ^(k)=O(km)\hat{\psi} (k) = O(k^m) as k0k\to 0.Comment: 15 pages, to appear in J. Phys.

    Conformal proper times according to the Woodhouse causal axiomatics of relativistic spacetimes

    Full text link
    On the basis of the Woodhouse causal axiomatics, we show that conformal proper times and an extra variable in addition to those of space and time, precisely and physically identified from experimental examples, together give a physical justification for the `chronometric hypothesis' of general relativity. Indeed, we show that, with a lack of these latter two ingredients, no clock paradox solution exists in which the clock and message functions are solely at the origin of the asymmetry. These proper times originate from a given conformal structure of the spacetime when ascribing different compatible projective structures to each Woodhouse particle, and then, each defines a specific Weylian sheaf structure. In addition, the proper time parameterizations, as two point functions, cannot be defined irrespective of the processes in the relative changes of physical characteristics. These processes are included via path-dependent conformal scale factors, which act like sockets for any kind of physical interaction and also represent the values of the variable associated with the extra dimension. As such, the differential aging differs far beyond the first and second clock effects in Weyl geometries, with the latter finally appearing to not be suitable.Comment: 25 pages, 2 figure

    Analytic results for Gaussian wave packets in four model systems: II. Autocorrelation functions

    Full text link
    The autocorrelation function, A(t), measures the overlap (in Hilbert space) of a time-dependent quantum mechanical wave function, psi(x,t), with its initial value, psi(x,0). It finds extensive use in the theoretical analysis and experimental measurement of such phenomena as quantum wave packet revivals. We evaluate explicit expressions for the autocorrelation function for time-dependent Gaussian solutions of the Schrodinger equation corresponding to the cases of a free particle, a particle undergoing uniform acceleration, a particle in a harmonic oscillator potential, and a system corresponding to an unstable equilibrium (the so-called `inverted' oscillator.) We emphasize the importance of momentum-space methods where such calculations are often more straightforwardly realized, as well as stressing their role in providing complementary information to results obtained using position-space wavefunctions.Comment: 18 pages, RevTeX, to appear in Found. Phys. Lett, Vol. 17, Dec. 200

    Does Quantum Mechanics Clash with the Equivalence Principle - and Does it Matter?

    Get PDF
    With an eye on developing a quantum theory of gravity, many physicists have recently searched for quantum challenges to the equivalence principle of general relativity. However, as historians and philosophers of science are well aware, the principle of equivalence is not so clear. When clarified, we think quantum tests of the equivalence principle won't yield much. The problem is that the clash/not-clash is either already evident or guaranteed not to exist. Nonetheless, this work does help teach us what it means for a theory to be geometric.Comment: 12 page

    Sonoluminescence as a QED vacuum effect. II: Finite Volume Effects

    Get PDF
    In a companion paper [quant-ph/9904013] we have investigated several variations of Schwinger's proposed mechanism for sonoluminescence. We demonstrated that any realistic version of Schwinger's mechanism must depend on extremely rapid (femtosecond) changes in refractive index, and discussed ways in which this might be physically plausible. To keep that discussion tractable, the technical computations in that paper were limited to the case of a homogeneous dielectric medium. In this paper we investigate the additional complications introduced by finite-volume effects. The basic physical scenario remains the same, but we now deal with finite spherical bubbles, and so must decompose the electromagnetic field into Spherical Harmonics and Bessel functions. We demonstrate how to set up the formalism for calculating Bogolubov coefficients in the sudden approximation, and show that we qualitatively retain the results previously obtained using the homogeneous-dielectric (infinite volume) approximation.Comment: 23 pages, LaTeX 209, ReV-TeX 3.2, five figure
    corecore