3,471 research outputs found
Autoplot: A browser for scientific data on the web
Autoplot is software developed for the Virtual Observatories in Heliophysics
to provide intelligent and automated plotting capabilities for many typical
data products that are stored in a variety of file formats or databases.
Autoplot has proven to be a flexible tool for exploring, accessing, and viewing
data resources as typically found on the web, usually in the form of a
directory containing data files with multiple parameters contained in each
file. Data from a data source is abstracted into a common internal data model
called QDataSet. Autoplot is built from individually useful components, and can
be extended and reused to create specialized data handling and analysis
applications and is being used in a variety of science visualization and
analysis applications. Although originally developed for viewing
heliophysics-related time series and spectrograms, its flexible and generic
data representation model makes it potentially useful for the Earth sciences.Comment: 16 page
Cross-correlations in scaling analyses of phase transitions
Thermal or finite-size scaling analyses of importance sampling Monte Carlo
time series in the vicinity of phase transition points often combine different
estimates for the same quantity, such as a critical exponent, with the intent
to reduce statistical fluctuations. We point out that the origin of such
estimates in the same time series results in often pronounced
cross-correlations which are usually ignored even in high-precision studies,
generically leading to significant underestimation of statistical fluctuations.
We suggest to use a simple extension of the conventional analysis taking
correlation effects into account, which leads to improved estimators with often
substantially reduced statistical fluctuations at almost no extra cost in terms
of computation time.Comment: 4 pages, RevTEX4, 3 tables, 1 figur
One-dimensional infinite component vector spin glass with long-range interactions
We investigate zero and finite temperature properties of the one-dimensional
spin-glass model for vector spins in the limit of an infinite number m of spin
components where the interactions decay with a power, \sigma, of the distance.
A diluted version of this model is also studied, but found to deviate
significantly from the fully connected model. At zero temperature, defect
energies are determined from the difference in ground-state energies between
systems with periodic and antiperiodic boundary conditions to determine the
dependence of the defect-energy exponent \theta on \sigma. A good fit to this
dependence is \theta =3/4-\sigma. This implies that the upper critical value of
\sigma is 3/4, corresponding to the lower critical dimension in the
d-dimensional short-range version of the model. For finite temperatures the
large m saddle-point equations are solved self-consistently which gives access
to the correlation function, the order parameter and the spin-glass
susceptibility. Special attention is paid to the different forms of finite-size
scaling effects below and above the lower critical value, \sigma =5/8, which
corresponds to the upper critical dimension 8 of the hypercubic short-range
model.Comment: 27 pages, 27 figures, 4 table
Substorm classification with the WINDMI model
International audienceThe results of a genetic algorithm optimization of the WINDMI model using the Blanchard-McPherron substorm data set is presented. A key result from the large-scale computations used to search for convergence in the predictions over the database is the finding that there are three distinct types of vx Bs -AL waveforms characterizing substorms. Type I and III substorms are given by the internally-triggered WINDMI model. The analysis reveals an additional type of event, called a type II substorm, that requires an external trigger as in the northward turning of the IMF model of Lyons (1995). We show that incorporating an external trigger, initiated by a fast northward turning of the IMF, into WINDMI, a low-dimensional model of substorms, yields improved predictions of substorm evolution in terms of the AL index. Intrinsic database uncertainties in the timing between the ground-based AL electrojet signal and the arrival time at the magnetopause of the IMF data measured by spacecraft in the solar wind prevent a sharp division between type I and II events. However, within these timing limitations we find that the fraction of events is roughly 40% type I, 40% type II, and 20% type III
Football fever: goal distributions and non-Gaussian statistics
Analyzing football score data with statistical techniques, we investigate how the
not purely random, but highly co-operative nature of the game is reflected in
averaged properties such as the probability distributions of scored goals for the
home and away teams. As it turns out, especially the tails of the distributions are
not well described by the Poissonian or binomial model resulting from the
assumption of uncorrelated random events. Instead, a good effective description of
the data is provided by less basic distributions such as the negative binomial one
or the probability densities of extreme value statistics. To understand this
behavior from a microscopical point of view, however, no waiting time problem or
extremal process need be invoked. Instead, modifying the Bernoulli random process
underlying the Poissonian model to include a simple component of self-affirmation seems to describe the data surprisingly well and allows to
understand the observed deviation from Gaussian statistics. The phenomenological
distributions used before can be understood as special cases within this framework.
We analyzed historical football score data from many leagues in Europe as well as
from international tournaments, including data from all past tournaments of the “FIFA World
Cup” series, and found the proposed models to be applicable rather universally. In
particular, here we analyze the results of the German women's premier football league
and consider the two separate German men's premier leagues in the East
and West during the cold war times as well as the unified league after 1990 to see how
scoring in football and the component of self-affirmation depend on cultural and
political circumstances
The Strangeness Radius and Magnetic Moment of the Nucleon Revisited
We update Jaffe's estimate of the strange isoscalar radius and magnetic
moment of the nucleon. We make use of a recent dispersion--theoretical fit to
the nucleon electromagnetic form factors and an improved description of
symmetry breaking in the vector nonet. We find ~n.m.
and ~fm. The strange formfactor follows
a dipole with a cut--off mass of 1.46~GeV, . These numbers should be considered as upper limits on the
strange vector current matrix--elements in the nucleon.Comment: 8 pp, LaTeX, uses epsf, 1 figure in separate fil
Error estimation and reduction with cross correlations
Besides the well-known effect of autocorrelations in time series of Monte
Carlo simulation data resulting from the underlying Markov process, using the
same data pool for computing various estimates entails additional cross
correlations. This effect, if not properly taken into account, leads to
systematically wrong error estimates for combined quantities. Using a
straightforward recipe of data analysis employing the jackknife or similar
resampling techniques, such problems can be avoided. In addition, a covariance
analysis allows for the formulation of optimal estimators with often
significantly reduced variance as compared to more conventional averages.Comment: 16 pages, RevTEX4, 4 figures, 6 tables, published versio
Universal amplitude-exponent relation for the Ising model on sphere-like lattices
Conformal field theory predicts finite-size scaling amplitudes of correlation
lengths universally related to critical exponents on sphere-like, semi-finite
systems of arbitrary dimensionality . Numerical
studies have up to now been unable to validate this result due to the
intricacies of lattice discretisation of such curved spaces. We present a
cluster-update Monte Carlo study of the Ising model on a three-dimensional
geometry using slightly irregular lattices that confirms the validity of a
linear amplitude-exponent relation to high precision.Comment: 6 pages, 2 figures, Europhys. Lett., in prin
Fractal dimension of domain walls in two-dimensional Ising spin glasses
We study domain walls in 2d Ising spin glasses in terms of a minimum-weight
path problem. Using this approach, large systems can be treated exactly. Our
focus is on the fractal dimension of domain walls, which describes via
\simL^{d_f} the growth of the average domain-wall length with %%
systems size . %% 20.07.07 OM %% Exploring systems up to L=320 we
yield for the case of Gaussian disorder, i.e. a much higher
accuracy compared to previous studies. For the case of bimodal disorder, where
many equivalent domain walls exist due to the degeneracy of this model, we
obtain a true lower bound and a (lower) estimate
as upper bound. Furthermore, we study the distributions of the domain-wall
lengths. Their scaling with system size can be described also only by the
exponent , i.e. the distributions are monofractal. Finally, we investigate
the growth of the domain-wall width with system size (``roughness'') and find a
linear behavior.Comment: 8 pages, 8 figures, submitted to Phys. Rev. B; v2: shortened versio
Generalization of the Bound State Model
In the bound state approach the heavy baryons are constructed by binding,
with any orbital angular momentum, the heavy meson multiplet to the nucleon
considered as a soliton in an effective meson theory. We point out that this
picture misses an entire family of states, labeled by a different angular
momentum quantum number, which are expected to exist according to the geometry
of the three-body constituent quark model (for N_C=3). To solve this problem we
propose that the bound state model be generalized to include orbitally excited
heavy mesons bound to the nucleon. In this approach the missing angular
momentum is ``locked-up'' in the excited heavy mesons. In the simplest
dynamical realization of the picture we give conditions on a set of coupling
constants for the binding of the missing heavy baryons of arbitrary spin. The
simplifications made include working in the large M limit, neglecting nucleon
recoil corrections, neglecting mass differences among different heavy spin
multiplets and also neglecting the effects of light vector mesons.Comment: 35 pages (ReVTeX), 2 PostScript Figure
- …
