1,970 research outputs found

    Scanning tunneling microscopy investigation of 2H-MoS_2: A layered semiconducting transition‐metal dichalcogenide

    Get PDF
    Scanning tunneling microscopy (STM) has been enormously successful in solving several important problems in the geometric and electronic structure of homogeneous metallic and semiconducting surfaces. A central question which remains to be answered with respect to the study of compound surfaces, however, is the extent to which the chemical identity of constituent atoms may be established. Recently, progress in this area was made by Feenstra et al. who succeeded in selectively imaging either Ga or As atoms on the GaAs (110) surface. So far this is the only case where such selectivity has been achieved. In an effort to add to our understanding of compound surface imaging we have undertaken a vacuum STM study of 2H-MoS_2, a material which has two structurally and electronically different atomic species at its surface

    Spectroscopic Temperature Measurements for a Direct Current Arcjet Diamond Chemical Vapor Deposition Reactor

    Get PDF
    The diamond thin filmcommercial market isprojected to exceed one billion dollars by the year 2000. Potential applications of diamond thin films range from cutting tools to electronics tomedical devices. The explosion ofinterest in this fieldresults from the extreme properties diamond possesses: itis the hardest material known toman and yet, has a coefficient of friction similar to Teflon;its ability to conduct heat is five times that of copper; and diamond is completely inert. However, despite the tremendous economic incentive, there are still several technological barriers preventing diamond filmscale-up to commercial production. Included among these are a fundamental understanding of the gas phase chemistry leading to diamond filmformation and the lack of a reliable insitu, on-line Chemical Vapor Deposition (CVD)monitoring capability. Here we describe the use of optical emission spectroscopy (OES) as a possible direct current CVD plasma jet on-line monitor. Specifically, OES spectra from the C2 radical, an intermediate species in the diamond CVD process, is utilized to obtain plasma gas temperatures insitu. Additionally, the reliability of a plasma gas temperature determined fromOES is examined withLaser-Induced-Fluorescence (LIF)

    Quantitative maps of geomagnetic perturbation vectors during substorm onset and recovery

    Full text link
    We have produced the first series of spherical harmonic, numerical maps of the time‐dependent surface perturbations in the Earth's magnetic field following the onset of substorms. Data from 124 ground magnetometer stations in the Northern Hemisphere at geomagnetic latitudes above 33° were used. Ground station data averaged over 5 min intervals covering 8 years (1998–2005) were used to construct pseudo auroral upper, auroral lower, and auroral electrojet (AU*, AL*, and AE*) indices. These indices were used to generate a list of substorms that extended from 1998 to 2005, through a combination of automated processing and visual checks. Events were sorted by interplanetary magnetic field (IMF) orientation (at the Advanced Composition Explorer (ACE) satellite), dipole tilt angle, and substorm magnitude. Within each category, the events were aligned on substorm onset. A spherical cap harmonic analysis was used to obtain a least error fit of the substorm disturbance patterns at 5 min intervals up to 90 min after onset. The fits obtained at onset time were subtracted from all subsequent fits, for each group of substorm events. Maps of the three vector components of the averaged magnetic perturbations were constructed to show the effects of substorm currents. These maps are produced for several specific ranges of values for the peak |AL*| index, IMF orientation, and dipole tilt angle. We demonstrate an influence of the dipole tilt angle on the response to substorms. Our results indicate that there are downward currents poleward and upward currents just equatorward of the peak in the substorms' westward electrojet.Key PointsShow quantitative maps of ground geomagnetic perturbations due to substormsThree vector components mapped as function of time during onset and recoveryCompare/contrast results for different tilt angle and sign of IMF Y‐componentPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/110891/1/jgra51610.pd

    Host-to-host variation of ecological interactions in polymicrobial infections

    Full text link
    Host-to-host variability with respect to interactions between microorganisms and multicellular hosts are commonly observed in infection and in homeostasis. However, the majority of mechanistic models used in analyzing host-microorganism relationships, as well as most of the ecological theories proposed to explain co-evolution of host and microbes, are based on averages across a host population. By assuming that observed variations are random and independent, these models overlook the role of inter-host differences. Here we analyze mechanisms underlying host-to-host variations, using the well-characterized experimental infection model of polymicrobial otitis media (OM) in chinchillas, in combination with population dynamic models and a Maximum Entropy (MaxEnt) based inference scheme. We find that the nature of the interactions among bacterial species critically regulates host-to-host variations of these interactions. Surprisingly, seemingly unrelated phenomena, such as the efficiency of individual bacterial species in utilizing nutrients for growth and the microbe-specific host immune response, can become interdependent in a host population. The latter finding suggests a potential mechanism that could lead to selection of specific strains of bacterial species during the coevolution of the host immune response and the bacterial species.Comment: 39 Pages 6 figure

    Specialising Software for Different Downstream Applications Using Genetic Improvement and Code Transplantation

    Get PDF
    OAPA Genetic improvement uses computational search to improve existing software while retaining its partial functionality. Genetic improvement has previously been concerned with improving a system with respect to all possible usage scenarios. In this paper, we show how genetic improvement can also be used to achieve specialisation to a specific set of usage scenarios. We use genetic improvement to evolve faster versions of a C++ program, a Boolean satisfiability solver called MiniSAT, specialising it for three applications. Our specialised solvers achieve between 4% and 36% execution time improvement, which is commensurate with efficiency gains achievable using human expert optimisation for the general solver. We also use genetic improvement to evolve faster versions of an image processing tool called ImageMagick, utilising code from GraphicsMagick, another image processing tool which was forked from it. We specialise the format conversion functionality to black & amp; white images and colour images only. Our specialised versions achieve up to 3% execution time improvement

    Effective thermodynamics of strongly coupled qubits

    Full text link
    Interactions between a quantum system and its environment at low temperatures can lead to violations of thermal laws for the system. The source of these violations is the entanglement between system and environment, which prevents the system from entering into a thermal state. On the other hand, for two-state systems, we show that one can define an effective temperature, placing the system into a `pseudo-thermal' state where effective thermal laws are upheld. We then numerically explore these assertions for an n-state system inspired by the spin-boson environment.Comment: 9 pages, 3 figure

    Coverage-dependent adsorption sites in the K/Ru(0001) system: a low-energy electron-diffraction analysis

    Get PDF
    The two ordered phases p(2 × 2) at a coverage θ = 0.25 and (√3 × √3)R30° at θ = 0.33 of potassium adsorbed on Ru(0001) were analyzed by use of low-energy electron-diffraction (LEED). In the (√3 × √3)R30° phase, the K atoms occupy threefold hcp sites, while in the p(2 × 2) phase the fcc site is favoured. In both phases, the K hard-sphere radii are nearly the same and close to the covalent Pauling radius
    corecore