15,705 research outputs found
Difference of optical conductivity between one- and two-dimensional doped nickelates
We study the optical conductivity in doped nickelates, and find the dramatic
difference of the spectrum in the gap (\alt4 eV) between one- (1D)
and two-dimensional (2D) nickelates. The difference is shown to be caused by
the dependence of hopping integral on dimensionality. The theoretical results
explain consistently the experimental data in 1D and
2D nickelates, YCaBaNiO and LaSrNiO,
respectively. The relation between the spectrum in the X-ray aborption
experiments and the optical conductivity in LaSrNiO is
discussed.Comment: RevTeX, 4 pages, 4 figure
Sound propagation in density wave conductors and the effect of long-range Coulomb interaction
We study theoretically the sound propagation in charge- and spin-density
waves in the hydrodynamic regime. First, making use of the method of comoving
frame, we construct the stress tensor appropriate for quasi-one dimensional
systems within tight-binding approximation. Taking into account the screening
effect of the long-range Coulomb interaction, we find that the increase of the
sound velocity below the critical temperature is about two orders of magnitude
less for longitudinal sound than for transverse one. It is shown that only the
transverse sound wave with displacement vector parallel to the chain direction
couples to the phason of the density wave, therefore we expect significant
electromechanical effect only in this case.Comment: revtex, 14 pages (in preprint form), submitted to PR
Incommensurate Charge Order Phase in Fe2OBO3 due to Geometrical Frustration
The temperature dependence of charge order in Fe2OBO3 was investigated by
resistivity and differential scanning calorimetry measurements, Mossbauer
spectroscopy, and synchrotron x-ray scattering, revealing an intermediate phase
between room temperature and 340 K, characterized by coexisting mobile and
immobile carriers, and by incommensurate superstructure modulations with
temperature-dependent propagation vector (1/2,0,tau). The incommensurate
modulations arise from specific anti-phase boundaries with low energy cost due
to geometrical charge frustration.Comment: 4 p., 5 fig.; v2: slightly expanded introduction + minor changes. PRL
in prin
The Gentlest Ascent Dynamics
Dynamical systems that describe the escape from the basins of attraction of
stable invariant sets are presented and analyzed. It is shown that the stable
fixed points of such dynamical systems are the index-1 saddle points.
Generalizations to high index saddle points are discussed. Both gradient and
non-gradient systems are considered. Preliminary results on the nature of the
dynamical behavior are presented
On the Nature of Part Time Radio Pulsars
The recent discovery of rotating radio transients and the quasi-periodicity
of pulsar activity in the radio pulsar PSR B193124 has challenged the
conventional theory of radio pulsar emission. Here we suggest that these
phenomena could be due to the interaction between the neutron star
magnetosphere and the surrounding debris disk. The pattern of pulsar emission
depends on whether the disk can penetrate the light cylinder and efficiently
quench the processes of particle production and acceleration inside the
magnetospheric gap. A precessing disk may naturally account for the
switch-on/off behavior in PSR B193124.Comment: 9 pages, accepted to ApJ
Library Design in Combinatorial Chemistry by Monte Carlo Methods
Strategies for searching the space of variables in combinatorial chemistry
experiments are presented, and a random energy model of combinatorial chemistry
experiments is introduced. The search strategies, derived by analogy with the
computer modeling technique of Monte Carlo, effectively search the variable
space even in combinatorial chemistry experiments of modest size. Efficient
implementations of the library design and redesign strategies are feasible with
current experimental capabilities.Comment: 5 pages, 3 figure
The Extreme Spin of the Black Hole in Cygnus X-1
The compact primary in the X-ray binary Cygnus X-1 was the first black hole
to be established via dynamical observations. We have recently determined
accurate values for its mass and distance, and for the orbital inclination
angle of the binary. Building on these results, which are based on our favored
(asynchronous) dynamical model, we have measured the radius of the inner edge
of the black hole's accretion disk by fitting its thermal continuum spectrum to
a fully relativistic model of a thin accretion disk. Assuming that the spin
axis of the black hole is aligned with the orbital angular momentum vector, we
have determined that Cygnus X-1 contains a near-extreme Kerr black hole with a
spin parameter a/M>0.95 (3\sigma). For a less probable (synchronous) dynamical
model, we find a/M>0.92 (3\sigma). In our analysis, we include the
uncertainties in black hole mass, orbital inclination angle and distance, and
we also include the uncertainty in the calibration of the absolute flux via the
Crab. These four sources of uncertainty totally dominate the error budget. The
uncertainties introduced by the thin-disk model we employ are particularly
small in this case given the extreme spin of the black hole and the disk's low
luminosity.Comment: Paper III of three papers on Cygnus X-1; 21 pages including 5 figures
and 12 tables, ApJ in press. The paper is significantly restructured; two
further tests of the robustness of our spin measurement are presented, and
our error analysis has been substantially improved; the conclusions are
unchange
β-adrenergic-mediated dynamic augmentation of sarcolemmal CaV 1.2 clustering and co-operativity in ventricular myocytes.
Key pointsPrevailing dogma holds that activation of the β-adrenergic receptor/cAMP/protein kinase A signalling pathway leads to enhanced L-type CaV 1.2 channel activity, resulting in increased Ca2+ influx into ventricular myocytes and a positive inotropic response. However, the full mechanistic and molecular details underlying this phenomenon are incompletely understood. CaV 1.2 channel clusters decorate T-tubule sarcolemmas of ventricular myocytes. Within clusters, nanometer proximity between channels permits Ca2+ -dependent co-operative gating behaviour mediated by physical interactions between adjacent channel C-terminal tails. We report that stimulation of cardiomyocytes with isoproterenol, evokes dynamic, protein kinase A-dependent augmentation of CaV 1.2 channel abundance along cardiomyocyte T-tubules, resulting in the appearance of channel 'super-clusters', and enhanced channel co-operativity that amplifies Ca2+ influx. On the basis of these data, we suggest a new model in which a sub-sarcolemmal pool of pre-synthesized CaV 1.2 channels resides in cardiomyocytes and can be mobilized to the membrane in times of high haemodynamic or metabolic demand, to tune excitation-contraction coupling.AbstractVoltage-dependent L-type CaV 1.2 channels play an indispensable role in cardiac excitation-contraction coupling. Activation of the β-adrenergic receptor (βAR)/cAMP/protein kinase A (PKA) signalling pathway leads to enhanced CaV 1.2 activity, resulting in increased Ca2+ influx into ventricular myocytes and a positive inotropic response. CaV 1.2 channels exhibit a clustered distribution along the T-tubule sarcolemma of ventricular myocytes where nanometer proximity between channels permits Ca2+ -dependent co-operative gating behaviour mediated by dynamic, physical, allosteric interactions between adjacent channel C-terminal tails. This amplifies Ca2+ influx and augments myocyte Ca2+ transient and contraction amplitudes. We investigated whether βAR signalling could alter CaV 1.2 channel clustering to facilitate co-operative channel interactions and elevate Ca2+ influx in ventricular myocytes. Bimolecular fluorescence complementation experiments reveal that the βAR agonist, isoproterenol (ISO), promotes enhanced CaV 1.2-CaV 1.2 physical interactions. Super-resolution nanoscopy and dynamic channel tracking indicate that these interactions are expedited by enhanced spatial proximity between channels, resulting in the appearance of CaV 1.2 'super-clusters' along the z-lines of ISO-stimulated cardiomyocytes. The mechanism that leads to super-cluster formation involves rapid, dynamic augmentation of sarcolemmal CaV 1.2 channel abundance after ISO application. Optical and electrophysiological single channel recordings confirm that these newly inserted channels are functional and contribute to overt co-operative gating behaviour of CaV 1.2 channels in ISO stimulated myocytes. The results of the present study reveal a new facet of βAR-mediated regulation of CaV 1.2 channels in the heart and support the novel concept that a pre-synthesized pool of sub-sarcolemmal CaV 1.2 channel-containing vesicles/endosomes resides in cardiomyocytes and can be mobilized to the sarcolemma to tune excitation-contraction coupling to meet metabolic and/or haemodynamic demands
Phase diagram for diblock copolymer melts under cylindrical confinement
We extensively study the phase diagram of a diblock copolymer melt confined
in a cylindrical nanopore using real-space self-consistent mean-field theory.
We discover a rich variety of new two-dimensional equilibrium structures that
have no analog in the unconfined system. These include non-hexagonally
coordinated cylinder phases and structures intermediate between lamellae and
cylinders. We map the stability regions and phase boundaries for all the
structures we find. As the pore radius is decreased, the pore accommodates
fewer cylindrical domains and structural transitions occur as cylinders are
eliminated. Our results are consistent with experiments, but we also predict
phases yet to be observed.Comment: 12 pages, 3 figures. submitted to Physical Review Letter
Charge Order Superstructure with Integer Iron Valence in Fe2OBO3
Solution-grown single crystals of Fe2OBO3 were characterized by specific
heat, Mossbauer spectroscopy, and x-ray diffraction. A peak in the specific
heat at 340 K indicates the onset of charge order. Evidence for a doubling of
the unit cell at low temperature is presented. Combining structural refinement
of diffraction data and Mossbauer spectra, domains with diagonal charge order
are established. Bond-valence-sum analysis indicates integer valence states of
the Fe ions in the charge ordered phase, suggesting Fe2OBO3 is the clearest
example of ionic charge order so far.Comment: 4 pages, 5 figures. Fig. 3 is available in higher resolution from the
authors. PRL in prin
- …
